Correlation functions of the semi-infinite two-dimensional ising model
Teoretičeskaâ i matematičeskaâ fizika, Tome 40 (1979) no. 1, pp. 95-99 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The local magnetization of a spin at an arbitrary distance $(n-1)$ from the edge of the lattice is rigorously calculated for the semi-infinite two-dimensional Ising model. It is shown that as $T\to T_c$, $n\to\infty$ the magnetization takes the scaling form $\langle s_n\rangle =\tau^{1/8}F(x)$ ($\tau=|1-T/T_c|$, $x\sim 2n \tau$). Exact expressions are found for the function $F(x)$ and its asymptotic behavior at large and small $x$ is found.
@article{TMF_1979_40_1_a8,
     author = {R. Z. Bariev},
     title = {Correlation functions of the semi-infinite two-dimensional ising model},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {95--99},
     year = {1979},
     volume = {40},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1979_40_1_a8/}
}
TY  - JOUR
AU  - R. Z. Bariev
TI  - Correlation functions of the semi-infinite two-dimensional ising model
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1979
SP  - 95
EP  - 99
VL  - 40
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1979_40_1_a8/
LA  - ru
ID  - TMF_1979_40_1_a8
ER  - 
%0 Journal Article
%A R. Z. Bariev
%T Correlation functions of the semi-infinite two-dimensional ising model
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1979
%P 95-99
%V 40
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1979_40_1_a8/
%G ru
%F TMF_1979_40_1_a8
R. Z. Bariev. Correlation functions of the semi-infinite two-dimensional ising model. Teoretičeskaâ i matematičeskaâ fizika, Tome 40 (1979) no. 1, pp. 95-99. http://geodesic.mathdoc.fr/item/TMF_1979_40_1_a8/

[1] B. M. McCoy, T. T. Wu, Phys. Rev., 162 (1967), 436 | DOI | MR

[2] M. E. Fisher, A. E. Ferdinand, Phys. Rev. Lett., 19 (1967), 169 | DOI

[3] M. I. Kaganov, A. N. Omelyanchuk, ZhETF, 61 (1971), 1679

[4] M. Fisher, Ustoichivost i fazovye perekhody, Sb., «Mir», 1973 | MR

[5] K. Binder, P. C. Hohenberg, Phys. Rev., B6 (1972), 3461 ; B9 (1974), 2194 | DOI | DOI

[6] A. J. Bray, M. A. Moore, J. Phys., A10 (1977), 1927 | MR

[7] C. N. Yang, Phys. Rev., 85 (1952), 808 | DOI | Zbl

[8] T. D. Schultz, D. C. Mattis, E. H. Lieb, Rev. Mod. Phys., 36 (1964), 856 | DOI | MR

[9] L. P. Kadanoff, Nuovo Cim., B44 (1966), 276 | DOI

[10] R. Z. Bariev, Physica, A93 (1978), 354 | DOI

[11] R. Z. Bariev, M. P. Zhelifonov, TMF, 25 (1975), 280 | MR

[12] E. W. Montroll, R. B. Potts, J. C. Ward, J. Math. Phys., 4 (1963), 308 | DOI | MR

[13] S. G. Mikhlin, Lektsii po lineinym integralnym uravneniyam, Fizmatgiz, 1959 | MR

[14] B. M. McCoy, C. A. Tracy, T. T. Wu, J. Math. Phys., 18 (1977), 1058 | DOI | MR | Zbl