New form of collective particle-like excitations in one-dimensional systems with resonance interaction
Teoretičeskaâ i matematičeskaâ fizika, Tome 39 (1979) no. 3, pp. 381-392 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Soliton-like solutions are obtained and investigated for the “perturbed” Schrödinger equation with cubic nonlinearity, which describes many phenomena in the theory of the condensed state. It is shown that there exists an entire class of solutions that cannot be obtained by the standard procedure of expansion with respect to a small parameter, this being so even in the framework of the inverse scattering technique. The explicit form of two such solutions is given, which immediately demonstrates the validity of the above assertion.
@article{TMF_1979_39_3_a9,
     author = {V. G. Makhan'kov and V. K. Fedyanin},
     title = {New form of collective particle-like excitations in one-dimensional systems with resonance interaction},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {381--392},
     year = {1979},
     volume = {39},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1979_39_3_a9/}
}
TY  - JOUR
AU  - V. G. Makhan'kov
AU  - V. K. Fedyanin
TI  - New form of collective particle-like excitations in one-dimensional systems with resonance interaction
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1979
SP  - 381
EP  - 392
VL  - 39
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1979_39_3_a9/
LA  - ru
ID  - TMF_1979_39_3_a9
ER  - 
%0 Journal Article
%A V. G. Makhan'kov
%A V. K. Fedyanin
%T New form of collective particle-like excitations in one-dimensional systems with resonance interaction
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1979
%P 381-392
%V 39
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1979_39_3_a9/
%G ru
%F TMF_1979_39_3_a9
V. G. Makhan'kov; V. K. Fedyanin. New form of collective particle-like excitations in one-dimensional systems with resonance interaction. Teoretičeskaâ i matematičeskaâ fizika, Tome 39 (1979) no. 3, pp. 381-392. http://geodesic.mathdoc.fr/item/TMF_1979_39_3_a9/

[1] N. N. Bogolyubov, Yu. A. Mitropolskii, Asimptoticheskie metody v teorii nelineinykh kolebanii, «Nauka», 1963 | MR

[2] A. Scott, F. Chu, D. McLaughlin, Proc. of IEEE, 61 (1973), 1443 | DOI | MR

[3] D. ter Haar, Nonlinear propagation behaviour in optical and other physical systems, Ref. 54/77, Oxford DTP, 1977 | Zbl

[4] V. G. Makhankov, Phys. Rep., 35C (1978), 1 | DOI | MR

[5] V. K. Fedyanin, V. G. Makhankov, L. V. Yakushevich, Phys. Lett., 61A (1977), 256 | DOI

[6] V. G. Makhankov, V. K. Fedyanin, DAN SSSR, 236 (1977), 838 | MR

[7] A. S. Davydov, N. Kislukha, Phys. Stat. Sol., 59B (1973), 465 | DOI

[8] Dzh. Uizem, Lineinye i nelineinye volny, «Mir», 1977 | MR

[9] V. K. Fedyanin, L. V. Yakushevich, TMF, 30 (1977), 133

[10] V. I. Karpman, V. M. Maslov, ZhETF, 73 (1977), 537 | MR

[11] V. G. Makhankov, Phys. Lett., 50A (1974), 42 | DOI

[12] Kh. Abdulloev, I. Bogolubsky, V. Makhankov, Phys. Lett., 48A (1974), 161 | DOI