Close packing of rectilinear polymers on a~square lattice
Teoretičeskaâ i matematičeskaâ fizika, Tome 39 (1979) no. 3, pp. 347-352

Voir la notice de l'article provenant de la source Math-Net.Ru

The set of close packings of rectilinear $r$-mers on a square lattice is considered. It is shown that the number of configurations of $r$-reefs on a lattice containing $N$ sites increases with increasing $N$ not slower than $\exp{\{4GN/\pi r^2\} }$ and not faster than $(r/2)^{N/r^2}\exp{\{4GN/\pi r^2\} }$ if $r$ is even and $$ \biggl(\frac{r-1}{2}\biggr)^{N/r^2} \exp\biggl\{(N/\pi r^2)\int_0^{\pi} \operatorname{arch}\biggl(\frac{2r}{r-1}-\cos{\varphi}\biggr)\,d\varphi\biggr\}, $$ if $r$ is odd ($G$ is Catalan's constant).
@article{TMF_1979_39_3_a5,
     author = {N. D. Gagunashvili and V. B. Priezzhev},
     title = {Close packing of rectilinear polymers on a~square lattice},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {347--352},
     publisher = {mathdoc},
     volume = {39},
     number = {3},
     year = {1979},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1979_39_3_a5/}
}
TY  - JOUR
AU  - N. D. Gagunashvili
AU  - V. B. Priezzhev
TI  - Close packing of rectilinear polymers on a~square lattice
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1979
SP  - 347
EP  - 352
VL  - 39
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1979_39_3_a5/
LA  - ru
ID  - TMF_1979_39_3_a5
ER  - 
%0 Journal Article
%A N. D. Gagunashvili
%A V. B. Priezzhev
%T Close packing of rectilinear polymers on a~square lattice
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1979
%P 347-352
%V 39
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1979_39_3_a5/
%G ru
%F TMF_1979_39_3_a5
N. D. Gagunashvili; V. B. Priezzhev. Close packing of rectilinear polymers on a~square lattice. Teoretičeskaâ i matematičeskaâ fizika, Tome 39 (1979) no. 3, pp. 347-352. http://geodesic.mathdoc.fr/item/TMF_1979_39_3_a5/