Diagonalization of bilinear bose Hamiltonians and asymptotic behavior of the Heisenberg fields they generate
Teoretičeskaâ i matematičeskaâ fizika, Tome 39 (1979) no. 3, pp. 330-346 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Necessary and sufficient conditions are obtained for bilinear real Bose Hamiltonians to be diagonalizable by means of a canonical Bogolyubov transformation; expressions are given for the coefficients of the diagonal form. In particular, it is shown that semibounded Hamiltonians of the considered class are always diagonalizable. The intimately related question of asymptotic boundedness of the Heisenberg fields corresponding to bilinear Hamiltonians is studied. Conditions are found under which these Hamiltonians generate asymptotically bounded fields.
@article{TMF_1979_39_3_a4,
     author = {L. A. Dadashev and V. Yu. Kuliev},
     title = {Diagonalization of bilinear bose {Hamiltonians} and asymptotic behavior of the {Heisenberg} fields they generate},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {330--346},
     year = {1979},
     volume = {39},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1979_39_3_a4/}
}
TY  - JOUR
AU  - L. A. Dadashev
AU  - V. Yu. Kuliev
TI  - Diagonalization of bilinear bose Hamiltonians and asymptotic behavior of the Heisenberg fields they generate
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1979
SP  - 330
EP  - 346
VL  - 39
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1979_39_3_a4/
LA  - ru
ID  - TMF_1979_39_3_a4
ER  - 
%0 Journal Article
%A L. A. Dadashev
%A V. Yu. Kuliev
%T Diagonalization of bilinear bose Hamiltonians and asymptotic behavior of the Heisenberg fields they generate
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1979
%P 330-346
%V 39
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1979_39_3_a4/
%G ru
%F TMF_1979_39_3_a4
L. A. Dadashev; V. Yu. Kuliev. Diagonalization of bilinear bose Hamiltonians and asymptotic behavior of the Heisenberg fields they generate. Teoretičeskaâ i matematičeskaâ fizika, Tome 39 (1979) no. 3, pp. 330-346. http://geodesic.mathdoc.fr/item/TMF_1979_39_3_a4/

[1] N. N. Bogolubov, J. Phys. USSR, 11 (1974), 23 ; Н. Н. Боголюбов, УФН, 67 (1959), 549 ; Н. Н. Боголюбов, С. В. Тябликов, ЖЭТФ, 19 (1949), 256 | MR | DOI | MR

[2] S. V. Tyablikov, Metody kvantovoi teorii magnetizma, «Nauka», 1974 | MR

[3] F. A. Berezin, Metod vtorichnogo kvantovaniya, «Nauka», 1965 | MR

[4] N. N. Bogolyubov (ml.), Metod issledovaniya modelnykh gamiltonianov, «Nauka», 1974 | MR

[5] S. Albeverio, Scattering Theory in Math. Phys., eds. J. A. Lavita, J.-P. Marchand, D. Reidel Publ. Co., 1973

[6] T. Kato, Teoriya vozmuschenii lineinykh operatorov, «Mir», 1972 | MR | Zbl

[7] N. Danford, Dzh. Shvarts, Lineinye operatory, T. 3. Spektralnye operatory, «Mir», 1974

[8] L. A. Dadashev, V. Yu. Kuliev, Izv. AN AzSSR, 1977, no. 4, 3 | MR

[9] S. G. Krein, Lineinye differentsialnye uravneniya v banakhovom prostranstve, «Nauka», 1971 | MR

[10] H. Araki, Publications of the Research Institute for Mathem. Science, ser. A, 4, no. 2, Kyoto Univers., 1968, 387 | DOI | MR | Zbl

[11] Y. Kato, N. Mugibayashi, Progr. Theor. Phys., 38 (1967), 813 | DOI