Dimensional analysis of Feynman integrands with Bogolyubov subtractions
Teoretičeskaâ i matematičeskaâ fizika, Tome 39 (1979) no. 3, pp. 307-316 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The integrands of Feynman diagrams with Bogolyubov-type subtractions are subjected to dimensional analysis; this yields sufficient conditions for determining the asymptotic behavior of the integrals in the ultraviolet region of Euclidean space.
@article{TMF_1979_39_3_a2,
     author = {\`E. B. Manukyan},
     title = {Dimensional analysis of {Feynman} integrands with {Bogolyubov} subtractions},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {307--316},
     year = {1979},
     volume = {39},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1979_39_3_a2/}
}
TY  - JOUR
AU  - È. B. Manukyan
TI  - Dimensional analysis of Feynman integrands with Bogolyubov subtractions
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1979
SP  - 307
EP  - 316
VL  - 39
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1979_39_3_a2/
LA  - ru
ID  - TMF_1979_39_3_a2
ER  - 
%0 Journal Article
%A È. B. Manukyan
%T Dimensional analysis of Feynman integrands with Bogolyubov subtractions
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1979
%P 307-316
%V 39
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1979_39_3_a2/
%G ru
%F TMF_1979_39_3_a2
È. B. Manukyan. Dimensional analysis of Feynman integrands with Bogolyubov subtractions. Teoretičeskaâ i matematičeskaâ fizika, Tome 39 (1979) no. 3, pp. 307-316. http://geodesic.mathdoc.fr/item/TMF_1979_39_3_a2/

[1] N. N. Bogoliubov, O. S. Parasiuk, Acta Math., 97 (1957), 227 ; О. С. Парасюк, УМЖ, 12 (1960), 287; K. Hepp, Commun. Math. Phys., 2 (1966), 301 | DOI | MR | DOI | Zbl

[2] W. Zimmermann, Commun. Math. Phys., 15 (1969), 208 | DOI | MR | Zbl

[3] S. Weinberg, Phys. Rev., 118 (1960), 838 ; J. P. Fink, J. Math. Phys., 9 (1968), 1389 | DOI | MR | Zbl | DOI | MR | Zbl

[4] E. B. Manoukian, J. Math. Phys., 19 (1978), 917 | DOI