Gibbs states in the case of classical representation of quantum spin systems
Teoretičeskaâ i matematičeskaâ fizika, Tome 39 (1979) no. 3, pp. 429-430 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An existence theorem is proved for limiting Gibbs states (measures) in the sense of Dobrushin for the ensemble of loops corresponding to the quantum anisotropic antiferromagnetic Heisenberg model.
@article{TMF_1979_39_3_a14,
     author = {I. L. Simyatitskii},
     title = {Gibbs states in the case of classical representation of quantum spin systems},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {429--430},
     year = {1979},
     volume = {39},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1979_39_3_a14/}
}
TY  - JOUR
AU  - I. L. Simyatitskii
TI  - Gibbs states in the case of classical representation of quantum spin systems
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1979
SP  - 429
EP  - 430
VL  - 39
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1979_39_3_a14/
LA  - ru
ID  - TMF_1979_39_3_a14
ER  - 
%0 Journal Article
%A I. L. Simyatitskii
%T Gibbs states in the case of classical representation of quantum spin systems
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1979
%P 429-430
%V 39
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1979_39_3_a14/
%G ru
%F TMF_1979_39_3_a14
I. L. Simyatitskii. Gibbs states in the case of classical representation of quantum spin systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 39 (1979) no. 3, pp. 429-430. http://geodesic.mathdoc.fr/item/TMF_1979_39_3_a14/

[1] R. L. Dobrushin, Teoriya veroyatn. i ee primen., 13 (1968), 201

[2] A. D. Venttsel, Kurs teorii sluchainykh protsessov, «Nauka», 1975 | MR

[3] J. Ginibre, Commun. Math. Phys., 10 (1968), 140 | DOI | MR

[4] H. Araki, K. Sewell, Commun. Math. Phys., 52 (1977), 103 | DOI | MR