Algebra of one-dimensional generalized functions
Teoretičeskaâ i matematičeskaâ fizika, Tome 39 (1979) no. 3, pp. 291-301

Voir la notice de l'article provenant de la source Math-Net.Ru

An associative algebra $\mathscr{A}$, equipped with involution and differentiation, is constructed for generalized functions of one variable that at one fixed point can have singularities like the delta function and its derivatives and also finite discontinuities for the function and all its derivatives. The elements of $\mathscr{A}$ together with the differentiation operator form the algebra of local observables for a quantum theory with indefinite metric and state vectors that are also generalized functions. By going over to a smaller space, one can obtain quantum models with positive metric and with strongly singular concentrated potentials.
@article{TMF_1979_39_3_a0,
     author = {Yu. M. Shirokov},
     title = {Algebra of one-dimensional generalized functions},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {291--301},
     publisher = {mathdoc},
     volume = {39},
     number = {3},
     year = {1979},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1979_39_3_a0/}
}
TY  - JOUR
AU  - Yu. M. Shirokov
TI  - Algebra of one-dimensional generalized functions
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1979
SP  - 291
EP  - 301
VL  - 39
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1979_39_3_a0/
LA  - ru
ID  - TMF_1979_39_3_a0
ER  - 
%0 Journal Article
%A Yu. M. Shirokov
%T Algebra of one-dimensional generalized functions
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1979
%P 291-301
%V 39
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1979_39_3_a0/
%G ru
%F TMF_1979_39_3_a0
Yu. M. Shirokov. Algebra of one-dimensional generalized functions. Teoretičeskaâ i matematičeskaâ fizika, Tome 39 (1979) no. 3, pp. 291-301. http://geodesic.mathdoc.fr/item/TMF_1979_39_3_a0/