Renormalization group in the problem of a self-avoiding random walk
Teoretičeskaâ i matematičeskaâ fizika, Tome 39 (1979) no. 2, pp. 215-218
Cet article a éte moissonné depuis la source Math-Net.Ru
The self-avoiding random walk of a particle in $n$–dimensional Euclidean space is investigated. The renormalization-group equation for the distribution function of the distances between the ends of the trajectory is found. The obtained equation can be used to find the asymptotic behavior of this function.
@article{TMF_1979_39_2_a7,
author = {V. I. Alkhimov},
title = {Renormalization group in the problem of a~self-avoiding random walk},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {215--218},
year = {1979},
volume = {39},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1979_39_2_a7/}
}
V. I. Alkhimov. Renormalization group in the problem of a self-avoiding random walk. Teoretičeskaâ i matematičeskaâ fizika, Tome 39 (1979) no. 2, pp. 215-218. http://geodesic.mathdoc.fr/item/TMF_1979_39_2_a7/
[1] V. I. Alkhimov, TMF, 29 (1976), 424 | MR
[2] N. N. Bogolyubov, D. V. Shirkov, Vvedenie v teoriyu kvantovannykh polei, «Nauka», 1976 | MR
[3] V. L. Bonch-Bruevich, S. V. Tyablikov, Metod funktsii Grina v statisticheskoi mekhanike, Fizmatgiz, 1961 | MR
[4] F. de Paskuale, K. di Kastro, G. Iona-Lazinio, Kvantovaya teoriya polya i fizika fazovykh perekhodov, Sb., «Mir», 1975