$N$-Soliton solution “on a pedestal” of the modified Korteweg–de Vries equation
Teoretičeskaâ i matematičeskaâ fizika, Tome 39 (1979) no. 2, pp. 205-214
Cet article a éte moissonné depuis la source Math-Net.Ru
The inverse scattering technique is used to obtain an $N$-soliton solution (which tends to a constant as $x\to\pm\infty$), of the modified Korteweg–de Vries equation with negative sign of the nonlinear term.
@article{TMF_1979_39_2_a6,
author = {N. N. Romanova},
title = {$N${-Soliton} solution {\textquotedblleft}on a pedestal{\textquotedblright} of the modified {Korteweg{\textendash}de~Vries} equation},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {205--214},
year = {1979},
volume = {39},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1979_39_2_a6/}
}
N. N. Romanova. $N$-Soliton solution “on a pedestal” of the modified Korteweg–de Vries equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 39 (1979) no. 2, pp. 205-214. http://geodesic.mathdoc.fr/item/TMF_1979_39_2_a6/
[1] T. L. Perelman, A. Kh. Fridman, M. M. Elyashevich, ZhETF, 66 (1974), 1316 | MR
[2] T. Maxworthy, L. G. Redekopp, Icarus, 29 (1976), 261 | DOI
[3] C. S. Gardner, J. M. Greene, M. D. Kruskal, R. M. Miura, Phys. Rev. Lett., 19 (1967), 1095 | DOI
[4] M. Wadati, J. Phys. Soc. Japan, 34 (1973), 1289 | DOI | MR | Zbl
[5] V. E. Zakharov, A. B. Shabat, ZhETF, 64 (1973), 1639