On the existence of the Deser–Gilbert–Sudarshan representation
Teoretičeskaâ i matematičeskaâ fizika, Tome 39 (1979) no. 2, pp. 180-184
Cet article a éte moissonné depuis la source Math-Net.Ru
The Jost–Lehmann representation for the single-particle matrix element $\langle p|[j(x),j(0)]|p\rangle=\varepsilon(x_0)\widehat C(x^2,x_0)$ of the current commutator is used to study the existence of the Deser–Gilbert–Sudarshan representation. Using the analytic and functional properties of this matrix element, one can show that the spectral function for the Deser–Gilbert–Sudarshan representation exists in the ordinary sense if and only if $\widehat C(x^2,x_0)\in S'(\overline R_+\otimes R)$. In the general case, the spectral function is an element of a more complicated space.
@article{TMF_1979_39_2_a3,
author = {R. Bartel and D. Robaschik},
title = {On the existence of the {Deser{\textendash}Gilbert{\textendash}Sudarshan} representation},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {180--184},
year = {1979},
volume = {39},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1979_39_2_a3/}
}
R. Bartel; D. Robaschik. On the existence of the Deser–Gilbert–Sudarshan representation. Teoretičeskaâ i matematičeskaâ fizika, Tome 39 (1979) no. 2, pp. 180-184. http://geodesic.mathdoc.fr/item/TMF_1979_39_2_a3/
[1] S. Deser, W. Gilbert, E. C. G. Sudarshan, Phys. Rev., 117 (1960), 266 ; В. Я. Файнберг, ЖЭТФ, 36 (1959), 1503 | DOI | MR | MR | Zbl
[2] N. Nakanishi, Phys. Rev., D4 (1971), 2571
[3] R. Jost, H. Lehmann, Nuovo Cim., 5 (1957), 1598 ; F. J. Dyson, Phys. Rev., 110 (1958), 1460 ; В. С. Владимиров, Методы теории функций многих комплексных переменных, «Наука», 1964 | DOI | MR | Zbl | DOI | MR | Zbl | MR | Zbl
[4] B. I. Zavyalov, TMF, 17 (1973), 178
[5] G. M. Gelfand, G. E. Shilov, Verallgemeinerte Funktionen, Band 2, DVW, 1962
[6] R. Bartel, D. Robashik, Preprint OIYaI, P2-11524, Dubna, 1978