The supergroup $O\operatorname{Sp}(1,4)$ and classical solutions of the Wess–Zumino model
Teoretičeskaâ i matematičeskaâ fizika, Tome 39 (1979) no. 2, pp. 172-179
Cet article a éte moissonné depuis la source Math-Net.Ru
A study is made of the superconformal transformation properties of the recently constructed $O(2,3)$-invariant classical solutions of the massless Wess–Zumino model. It is shown that these properties are completely determined by two supersubgroups $O\operatorname{Sp}(1,4)$ of the superconformal group which intersect on the subgroup $O(2,3)$. One $O\operatorname{Sp}(1,4)$ is the stability subgroup of the solutions. The other $O\operatorname{Sp}(1,4)$ is spontaneously broken down to $O(2,3)$. Its odd transformations uniquely fix the dependence of the solutions on the Grassmann degrees of freedom and generate the complete set of solutions. We note a possible connection between the $O\operatorname{Sp}(1,4)$ structure of the Wess–Zumino model and the analogous structure in spontaneously broken supergravity, and we discuss ways of generalizing our results to theories with Euclidean supersymmetry.
@article{TMF_1979_39_2_a2,
author = {E. A. Ivanov and A. S. Sorin},
title = {The supergroup $O\operatorname{Sp}(1,4)$ and classical solutions of the {Wess{\textendash}Zumino} model},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {172--179},
year = {1979},
volume = {39},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1979_39_2_a2/}
}
TY - JOUR
AU - E. A. Ivanov
AU - A. S. Sorin
TI - The supergroup $O\operatorname{Sp}(1,4)$ and classical solutions of the Wess–Zumino model
JO - Teoretičeskaâ i matematičeskaâ fizika
PY - 1979
SP - 172
EP - 179
VL - 39
IS - 2
UR - http://geodesic.mathdoc.fr/item/TMF_1979_39_2_a2/
LA - ru
ID - TMF_1979_39_2_a2
ER -
E. A. Ivanov; A. S. Sorin. The supergroup $O\operatorname{Sp}(1,4)$ and classical solutions of the Wess–Zumino model. Teoretičeskaâ i matematičeskaâ fizika, Tome 39 (1979) no. 2, pp. 172-179. http://geodesic.mathdoc.fr/item/TMF_1979_39_2_a2/
[1] N. S. Baaklini, Nucl. Phys., B129 (1977), 354 | DOI
[2] B. Zumino, Phys. Lett., B69 (1977), 369 | DOI | MR
[3] P. Di Vecchia, S. Ferrara, Nucl. Phys., B130 (1977), 93 | DOI
[4] J. Wess, B. Zumino, Phys. Lett., B49 (1974), 52 | DOI
[5] J. Wess, B. Zumino, Nucl. Phys., B70 (1974), 39 | DOI | MR
[6] S. Ferrara, Nucl. Phys., B77 (1974), 73 | DOI
[7] S. Deser, B. Zumino, Phys. Rev. Lett., 38 (1977), 1433 | DOI
[8] Ali H. Chamseddine, Nucl. Phys., B131 (1977), 494 | MR
[9] A. Salam, J. Strathdee, Phys. Rev., D11 (1975), 1521 | MR
[10] S. Fubini, Nuovo Cim., 34A (1976), 521 | DOI
[11] B. Zumino, Nucl. Phys., B127 (1977), 189 | DOI
[12] R. Jackiw, C. Rebbi, Phys. Rev., D14 (1976), 517 | MR