Bound states of a cluster operator
Teoretičeskaâ i matematičeskaâ fizika, Tome 39 (1979) no. 1, pp. 83-93
Cet article a éte moissonné depuis la source Math-Net.Ru
The bound states of a self-adjoint cluster operator with maximal single-particle spectrum are studied. It is shown that under certain conditions this spectrum can disappear, being absorbed by the continuous two-particle spectrum. It is shown that this phenomenon can occur in the spectrum of the transfer matrix of certain two-dimensional Gibbs lattice fields (for example, in the so-called eight-vertex model).
@article{TMF_1979_39_1_a8,
author = {S. N. Lakaev and R. A. Minlos},
title = {Bound states of a~cluster operator},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {83--93},
year = {1979},
volume = {39},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1979_39_1_a8/}
}
S. N. Lakaev; R. A. Minlos. Bound states of a cluster operator. Teoretičeskaâ i matematičeskaâ fizika, Tome 39 (1979) no. 1, pp. 83-93. http://geodesic.mathdoc.fr/item/TMF_1979_39_1_a8/
[1] F. G. Abdulla-zade, R. A. Minlos, S. K. Pogosyan, Mnogokomponentnye sluchainye sistemy, «Nauka», 1978, s. 5–30 | MR | Zbl
[2] V. A. Malyshev, Vzaimodeistvuyuschie markovskie protsessy v biologii, Nauchnyi tsentr biologicheskikh issledovanii, Puschino, 1977, s. 176–196
[3] V. A. Malyshev, R. A. Minlos, J. Stat. Phys., 1979 (to appear) | MR
[4] R. A. Minlos, Ya. G. Sinai, TMF, 2 (1970), 230 | MR
[5] M. A. Naimark, Normirovannye koltsa, «Nauka», 1968, str. 566–592 | MR | Zbl
[6] B. Simon, J. Funct. Anal., 25 (1977), 338 | DOI | MR | Zbl
[7] R. L. Dobrushin, Teoriya veroyatn. i ee primen., 15 (1970), 469 | Zbl