Breaking of scale invariance and behavior of the spectral function in the Jost–Lehmann–Dyson representation
Teoretičeskaâ i matematičeskaâ fizika, Tome 39 (1979) no. 1, pp. 35-47 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A calculation is made of the behavior of the spectral function $\psi(|\mathbf u|, \lambda^2)$ of the Jost–Lehmann–Dysen representation as $\lambda^2\to\infty$ and $|\mathbf u|\to0$ in the ladder $\varphi^3$ and $\varphi^4$ models. It is shown that in the case of the q 4 model, for which scale invarianee is broken, the spectral function does not factorize with respect to the variables as $\lambda^2\to\infty$ and that its growth with respect to $\lambda^2$ depends essentially on $|\mathbf u|$.
@article{TMF_1979_39_1_a3,
     author = {A. V. Kiselev and M. A. Mestvirishvili and V. E. Rochev},
     title = {Breaking of scale invariance and behavior of the spectral function in the {Jost{\textendash}Lehmann{\textendash}Dyson} representation},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {35--47},
     year = {1979},
     volume = {39},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1979_39_1_a3/}
}
TY  - JOUR
AU  - A. V. Kiselev
AU  - M. A. Mestvirishvili
AU  - V. E. Rochev
TI  - Breaking of scale invariance and behavior of the spectral function in the Jost–Lehmann–Dyson representation
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1979
SP  - 35
EP  - 47
VL  - 39
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1979_39_1_a3/
LA  - ru
ID  - TMF_1979_39_1_a3
ER  - 
%0 Journal Article
%A A. V. Kiselev
%A M. A. Mestvirishvili
%A V. E. Rochev
%T Breaking of scale invariance and behavior of the spectral function in the Jost–Lehmann–Dyson representation
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1979
%P 35-47
%V 39
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1979_39_1_a3/
%G ru
%F TMF_1979_39_1_a3
A. V. Kiselev; M. A. Mestvirishvili; V. E. Rochev. Breaking of scale invariance and behavior of the spectral function in the Jost–Lehmann–Dyson representation. Teoretičeskaâ i matematičeskaâ fizika, Tome 39 (1979) no. 1, pp. 35-47. http://geodesic.mathdoc.fr/item/TMF_1979_39_1_a3/

[1] N. N. Bogolyubov, V. S. Vladimirov, A. N. Tavkhelidze, TMF, 12 (1972), 305

[2] R. Jost, H. Lehmann, Nuovo Cim., 5 (1957), 1596 ; F. Dyson, Phys. Rev., 110 (1958), 579 | DOI | MR | DOI | MR | Zbl

[3] E. Vitsorek, V. A. Matveev, R. Robashik, A. N. Tavkhelidze, TMF, 16 (1973), 315

[4] B. I. Zavyalov, TMF, 17 (1973), 178 ; 19 (1974), 163

[5] A. A. Logunov, M. A. Mestvirishvili, V. A. Petrov, Preprint IFVE 74-66, Serpukhov, 1974; Препринт ИФВЭ 76-157, Серпухов, 1976

[6] K. G. Klimenko, V. E. Rochev, TMF, 30 (1977), 491

[7] K. G. Klimenko, V. E. Rochev, TMF, 32 (1977), 349

[8] B. V. Geshkenbein, A. I. Komech, YaF, 18 (1973), 914

[9] B. V. Geshkenbein, A. I. Komech, YaF, 20 (1974), 562

[10] N. N. Bogolyubov, D. V. Shirkov, Vvedenie v teoriyu kvantovannykh polei, «Nauka», 1976 | MR

[11] G. Beitmen, A. Erdeii, Tablitsy integralnykh preobrazovanii, t. I, «Nauka», 1969 ; т. II, «Наука», 1970 | MR

[12] G. Beitmen, A. Erdeii, Vysshie transtsendentnye funktsii, t. I, «Nauka», 1973 | MR

[13] I. M. Gelfand, G. E. Shilov, Obobschennye funktsii, vyp. 1, Fizmatgiz, 1959 | MR