Geometrical approach to the dynamics of a~relativistic string
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 39 (1979) no. 1, pp. 27-34
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The problems of the classical dynamics of a relativistic string are intimately related to the theory of two-dimensional extremal surfaces in $n$-dimensional pseudo-Euclidean space $E^1_n$. In three-dimensional space-time $E^1_3$, it is possible to exploit fully the formalism of the Gaussian theory of two-dimensional surfaces, the surface being specified to within shifts by its first and second quadratic forms. Integration of the derivation formulas for the basic vectors 
$\partial x_\mu(\tau,\sigma)/\partial\tau=\dot x_\mu(\tau,\sigma)$, 
$\partial x_\mu(\tau,\sigma)/\partial\sigma=x_\mu'(\tau,\sigma)$
are the tangent vectors to the surface and $m_\mu(\tau,\sigma)$ is the normal to the surface at the given point $\tau,\sigma$) yields a representation for
these vectors in a natural basis satisfying the orthonormal gauge 
$(\dot x_\mu\pm x'_\mu)^2=0$ and d'Alembert's equation 
$\ddot x_\mu(\tau,\sigma)-x''_\mu(\tau,\sigma)=0$ in the string dynamics. This representation can be generalized to a pseudo-Euclidean space $E^1_n$, of any dimension $n$. For a relativistic string in $E^1_n$ a representation is obtained that contains $n-2$ arbitrary functions and satisfies the gauge conditions, the  equations of motion, and the boundary conditions for a free string.
			
            
            
            
          
        
      @article{TMF_1979_39_1_a2,
     author = {B. M. Barbashov and A. L. Koshkarov},
     title = {Geometrical approach to the dynamics of a~relativistic string},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {27--34},
     publisher = {mathdoc},
     volume = {39},
     number = {1},
     year = {1979},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1979_39_1_a2/}
}
                      
                      
                    TY - JOUR AU - B. M. Barbashov AU - A. L. Koshkarov TI - Geometrical approach to the dynamics of a~relativistic string JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1979 SP - 27 EP - 34 VL - 39 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1979_39_1_a2/ LA - ru ID - TMF_1979_39_1_a2 ER -
B. M. Barbashov; A. L. Koshkarov. Geometrical approach to the dynamics of a~relativistic string. Teoretičeskaâ i matematičeskaâ fizika, Tome 39 (1979) no. 1, pp. 27-34. http://geodesic.mathdoc.fr/item/TMF_1979_39_1_a2/
