Geometrical approach to the dynamics of a relativistic string
Teoretičeskaâ i matematičeskaâ fizika, Tome 39 (1979) no. 1, pp. 27-34
Cet article a éte moissonné depuis la source Math-Net.Ru
The problems of the classical dynamics of a relativistic string are intimately related to the theory of two-dimensional extremal surfaces in $n$-dimensional pseudo-Euclidean space $E^1_n$. In three-dimensional space-time $E^1_3$, it is possible to exploit fully the formalism of the Gaussian theory of two-dimensional surfaces, the surface being specified to within shifts by its first and second quadratic forms. Integration of the derivation formulas for the basic vectors $\partial x_\mu(\tau,\sigma)/\partial\tau=\dot x_\mu(\tau,\sigma)$, $\partial x_\mu(\tau,\sigma)/\partial\sigma=x_\mu'(\tau,\sigma)$ are the tangent vectors to the surface and $m_\mu(\tau,\sigma)$ is the normal to the surface at the given point $\tau,\sigma$) yields a representation for these vectors in a natural basis satisfying the orthonormal gauge $(\dot x_\mu\pm x'_\mu)^2=0$ and d'Alembert's equation $\ddot x_\mu(\tau,\sigma)-x''_\mu(\tau,\sigma)=0$ in the string dynamics. This representation can be generalized to a pseudo-Euclidean space $E^1_n$, of any dimension $n$. For a relativistic string in $E^1_n$ a representation is obtained that contains $n-2$ arbitrary functions and satisfies the gauge conditions, the equations of motion, and the boundary conditions for a free string.
@article{TMF_1979_39_1_a2,
author = {B. M. Barbashov and A. L. Koshkarov},
title = {Geometrical approach to the dynamics of a~relativistic string},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {27--34},
year = {1979},
volume = {39},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1979_39_1_a2/}
}
B. M. Barbashov; A. L. Koshkarov. Geometrical approach to the dynamics of a relativistic string. Teoretičeskaâ i matematičeskaâ fizika, Tome 39 (1979) no. 1, pp. 27-34. http://geodesic.mathdoc.fr/item/TMF_1979_39_1_a2/
[1] R. Omnes, Preprint Laboratoire de Phys. Theor. et Hautes Energies, No 77/12, Sacle, 1977
[2] J. Liouville, J. Math. p. appl., 18 (1853), 71
[3] Zh. Favar, Kurs lokalnoi differentsialnoi geometrii, IL, 1960