Coexistence of dielectric and superconductive ordering in two-band systems
Teoretičeskaâ i matematičeskaâ fizika, Tome 39 (1979) no. 1, pp. 118-129 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A study is made of the coexistence of dielectric and superconducting phases in two-band systems when one of the bands is fiat. Allowance is made for the departure from half filling of a one-dimensional band, $\mu\ne0$ ($\mu$ is the chemical potential), and also jump processes. It is found that a superconducting state can be generated on the background of a dielectric state in the two-band system. However, the formation of a dielectric state on the background of superconductive ordering is impossible at all values of $\mu$, i.e., superconductivity prevents the dielectric transition.
@article{TMF_1979_39_1_a11,
     author = {M. E. Palistrant},
     title = {Coexistence of dielectric and superconductive ordering in two-band systems},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {118--129},
     year = {1979},
     volume = {39},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1979_39_1_a11/}
}
TY  - JOUR
AU  - M. E. Palistrant
TI  - Coexistence of dielectric and superconductive ordering in two-band systems
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1979
SP  - 118
EP  - 129
VL  - 39
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1979_39_1_a11/
LA  - ru
ID  - TMF_1979_39_1_a11
ER  - 
%0 Journal Article
%A M. E. Palistrant
%T Coexistence of dielectric and superconductive ordering in two-band systems
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1979
%P 118-129
%V 39
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1979_39_1_a11/
%G ru
%F TMF_1979_39_1_a11
M. E. Palistrant. Coexistence of dielectric and superconductive ordering in two-band systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 39 (1979) no. 1, pp. 118-129. http://geodesic.mathdoc.fr/item/TMF_1979_39_1_a11/

[1] R. Paierls, Kvantovaya teoriya tverdykh tel, IL, 1956

[2] E. H. Lieb, F. Y. Wu, Phys. Rev. Lett., 20 (1968), 1445 | DOI | MR

[3] R. E. Borland, Proc. Roy. Soc. (London), 78 (1961), 926 | DOI

[4] K. Levin, D. L. Mills, S. L. Cunningham, Phys. Rev., B10 (1974), 3821 | DOI

[5] K. Levin, S. L. Cunningham, D. L. Mills, Phys. Rev., B10 (1974), 3832 | DOI

[6] R. Kh. Timerov, ZhETF, 72 (1977), 2309

[7] M. C. Leung, Phys. Rev., B11 (1975), 4272 | DOI

[8] M. E. Palistrant, O. P. Bezzub, Teoriya sverkhprovodyaschikh splavov, «Shtiintsa», Kishinev, 1978 | Zbl

[9] V. A. Moskalenko, FMM, 8 (1959), 503

[10] N. N. Bogolyubov, V. V. Tolmachev, D. V. Shirkov, Novyi metod v teorii sverkhprovodimosti, Izd-vo AN SSSR, M., 1958

[11] N. N. Bogolyubov, D. N. Zubarev, Yu. A. Tserkovnikov, DAN SSSR, 117 (1957), 788