Solutions of one-dimensional Schrödinger equation with hardy-type potential. The $S$-matrix formalism
Teoretičeskaâ i matematičeskaâ fizika, Tome 38 (1979) no. 3, pp. 380-387 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A general method is developed for investigating the solutions of the scattering problem for the one-dimensional SchrSdinger equation with Hardy potential. The method uses the formalism of stationary scattering theory. In the quasiclassical and wave (anticlassical) approximations, calculations are made of the amplitude of reflection of particles from a potential with Hardy function describing Bragg scattering of shortwavelength radiation on static elastic distortions of dislocation type in a crystal lattice.
@article{TMF_1979_38_3_a9,
     author = {A. M. Arustamyan and V. L. Vergasov and F. N. Chukhovskii},
     title = {Solutions of one-dimensional {Schr\"odinger} equation with hardy-type potential. {The} $S$-matrix formalism},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {380--387},
     year = {1979},
     volume = {38},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1979_38_3_a9/}
}
TY  - JOUR
AU  - A. M. Arustamyan
AU  - V. L. Vergasov
AU  - F. N. Chukhovskii
TI  - Solutions of one-dimensional Schrödinger equation with hardy-type potential. The $S$-matrix formalism
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1979
SP  - 380
EP  - 387
VL  - 38
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1979_38_3_a9/
LA  - ru
ID  - TMF_1979_38_3_a9
ER  - 
%0 Journal Article
%A A. M. Arustamyan
%A V. L. Vergasov
%A F. N. Chukhovskii
%T Solutions of one-dimensional Schrödinger equation with hardy-type potential. The $S$-matrix formalism
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1979
%P 380-387
%V 38
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1979_38_3_a9/
%G ru
%F TMF_1979_38_3_a9
A. M. Arustamyan; V. L. Vergasov; F. N. Chukhovskii. Solutions of one-dimensional Schrödinger equation with hardy-type potential. The $S$-matrix formalism. Teoretičeskaâ i matematičeskaâ fizika, Tome 38 (1979) no. 3, pp. 380-387. http://geodesic.mathdoc.fr/item/TMF_1979_38_3_a9/

[1] V. L. Pokrovskii, I. M. Khalatnikov, ZhETF, 40 (1961), 1713

[2] A. Z. Patashinskii, V. L. Pokrovskii, I. M. Khalatnikov, ZhETF, 44 (1963), 2062 | MR

[3] A. Z. Patashinskii, V. L. Pokrovskii, I. M. Khalatnikov, ZhETF, 45 (1963), 760 | MR

[4] A. Z. Patashinskii, V. L. Pokrovskii, I. M. Khalatnikov, ZhETF, 45 (1963), 989 | MR

[5] F. N. Chukhovskii, A. A. Shtolberg, ZhETF, 64 (1973), 1033

[6] P. V. Petrashen, F. N. Chukhovskii, ZhETF, 69 (1975), 477

[7] G. Dzheffris, B. Svirls, Metody matematicheskoi fiziki, t. 3, «Mir», 1970 | MR

[8] Dzh. Kheding, Vvedenie v metod fazovykh integralov (metod VKB), «Mir», 1965, str. 43

[9] N. Freman, P. U. Freman, VKB-priblizhenie, «Mir», 1967, str. 122

[10] L. D. Landau, E. M. Lifshits, Kvantovaya mekhanika, Fizmatgiz, 1963

[11] V. A. Kolkunov, TMF, 2 (1970), 169

[12] G. Beitmen, A. Erdeii, Vysshie transtsendentnye funktsii, t. 1, «Nauka», 1965 | MR