Method of two-time Green's functions in the Ising model with transverse field
Teoretičeskaâ i matematičeskaâ fizika, Tome 38 (1979) no. 3, pp. 388-398

Voir la notice de l'article provenant de la source Math-Net.Ru

Two-time Green's functions are used to develop a self-consistent approach to the calculation of the spectrum of collective excitations and the free energy in the Ising model with transverse field. Calculations are also made of all correlation functions with allowance for the singularity of their spectral intensity at zero frequency. The accuracy of the approximation is checked by means of kinematic sum rules. It is shown that the use of these sum rules to determine the order parameter leads to unphysical results.
@article{TMF_1979_38_3_a10,
     author = {V. L. Aksenov and H. Konwent and Yu. Shraiber},
     title = {Method of two-time {Green's} functions in the {Ising} model with transverse field},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {388--398},
     publisher = {mathdoc},
     volume = {38},
     number = {3},
     year = {1979},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1979_38_3_a10/}
}
TY  - JOUR
AU  - V. L. Aksenov
AU  - H. Konwent
AU  - Yu. Shraiber
TI  - Method of two-time Green's functions in the Ising model with transverse field
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1979
SP  - 388
EP  - 398
VL  - 38
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1979_38_3_a10/
LA  - ru
ID  - TMF_1979_38_3_a10
ER  - 
%0 Journal Article
%A V. L. Aksenov
%A H. Konwent
%A Yu. Shraiber
%T Method of two-time Green's functions in the Ising model with transverse field
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1979
%P 388-398
%V 38
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1979_38_3_a10/
%G ru
%F TMF_1979_38_3_a10
V. L. Aksenov; H. Konwent; Yu. Shraiber. Method of two-time Green's functions in the Ising model with transverse field. Teoretičeskaâ i matematičeskaâ fizika, Tome 38 (1979) no. 3, pp. 388-398. http://geodesic.mathdoc.fr/item/TMF_1979_38_3_a10/