Kubo—Martin–Schwinger states of classical dynamical systems with infinite phase space
Teoretičeskaâ i matematičeskaâ fizika, Tome 38 (1979) no. 3, pp. 306-312
Cet article a éte moissonné depuis la source Math-Net.Ru
An example of a classical dynamical system with infinite phase space that satisfies the analog of the Kubo–Martin–Schwinger conditions for classical dynamics is constructed explicitly. Attention is drawn to the connection between the constructed system and the representation of dynamics in a Fock space.
@article{TMF_1979_38_3_a1,
author = {A. A. Arsen'ev},
title = {Kubo{\textemdash}Martin{\textendash}Schwinger states of classical dynamical systems with infinite phase space},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {306--312},
year = {1979},
volume = {38},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1979_38_3_a1/}
}
A. A. Arsen'ev. Kubo—Martin–Schwinger states of classical dynamical systems with infinite phase space. Teoretičeskaâ i matematičeskaâ fizika, Tome 38 (1979) no. 3, pp. 306-312. http://geodesic.mathdoc.fr/item/TMF_1979_38_3_a1/
[1] R. Haag, D. Kastler, E. B. Trych-Pohlmeyer, Commun. Math. Phys., 38 (1974), 173 | DOI | MR
[2] M. Aizenman, G. Galavotti, S. Goldstein, J. L. Lebowitz, Commun. Math. Phys., 48 (1967), 1 | DOI | MR
[3] J. L. Lebowitz, M. Aizenman, S. Goldstein, J. Math. Phys., 16 (1975), 1284 | DOI | MR
[4] G. Gallavotti, M. Pulvirenti, Commun. Math. Phys., 46 (1976), 1 | DOI | MR | Zbl
[5] J. V. Pulé, A. Verboven, J. Math. Phys., 18 (1977), 868 | DOI | MR
[6] P. R. Chernoff, Y. E. Marsden, Lect. Notes. Mathem., 425, 1974 | DOI | MR | Zbl
[7] I. Segal, Canad. J. Math., 13 (1961), 1 | DOI | MR | Zbl
[8] I. Segal, Bull. Amer. Math. Soc., 75 (1969), 1383 | DOI | MR | Zbl