Mathematical description of the evolution of infinite systems of classical statistical physics.~I. Locally perturbed one-dimensional systems
Teoretičeskaâ i matematičeskaâ fizika, Tome 38 (1979) no. 2, pp. 230-250
Voir la notice de l'article provenant de la source Math-Net.Ru
An infinite one-dimensional system of elastic spheres is considered. A solution of the Bogolyubov equations is constructed for initial data representing a local perturbation of the equilibrium distribution functions.
@article{TMF_1979_38_2_a8,
author = {D. Ya. Petrina},
title = {Mathematical description of the evolution of infinite systems of classical statistical {physics.~I.} {Locally} perturbed one-dimensional systems},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {230--250},
publisher = {mathdoc},
volume = {38},
number = {2},
year = {1979},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1979_38_2_a8/}
}
TY - JOUR AU - D. Ya. Petrina TI - Mathematical description of the evolution of infinite systems of classical statistical physics.~I. Locally perturbed one-dimensional systems JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1979 SP - 230 EP - 250 VL - 38 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1979_38_2_a8/ LA - ru ID - TMF_1979_38_2_a8 ER -
%0 Journal Article %A D. Ya. Petrina %T Mathematical description of the evolution of infinite systems of classical statistical physics.~I. Locally perturbed one-dimensional systems %J Teoretičeskaâ i matematičeskaâ fizika %D 1979 %P 230-250 %V 38 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/TMF_1979_38_2_a8/ %G ru %F TMF_1979_38_2_a8
D. Ya. Petrina. Mathematical description of the evolution of infinite systems of classical statistical physics.~I. Locally perturbed one-dimensional systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 38 (1979) no. 2, pp. 230-250. http://geodesic.mathdoc.fr/item/TMF_1979_38_2_a8/