Mathematical description of the evolution of infinite systems of classical statistical physics.~I. Locally perturbed one-dimensional systems
Teoretičeskaâ i matematičeskaâ fizika, Tome 38 (1979) no. 2, pp. 230-250

Voir la notice de l'article provenant de la source Math-Net.Ru

An infinite one-dimensional system of elastic spheres is considered. A solution of the Bogolyubov equations is constructed for initial data representing a local perturbation of the equilibrium distribution functions.
@article{TMF_1979_38_2_a8,
     author = {D. Ya. Petrina},
     title = {Mathematical description of the evolution of infinite systems of classical statistical {physics.~I.} {Locally} perturbed one-dimensional systems},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {230--250},
     publisher = {mathdoc},
     volume = {38},
     number = {2},
     year = {1979},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1979_38_2_a8/}
}
TY  - JOUR
AU  - D. Ya. Petrina
TI  - Mathematical description of the evolution of infinite systems of classical statistical physics.~I. Locally perturbed one-dimensional systems
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1979
SP  - 230
EP  - 250
VL  - 38
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1979_38_2_a8/
LA  - ru
ID  - TMF_1979_38_2_a8
ER  - 
%0 Journal Article
%A D. Ya. Petrina
%T Mathematical description of the evolution of infinite systems of classical statistical physics.~I. Locally perturbed one-dimensional systems
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1979
%P 230-250
%V 38
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1979_38_2_a8/
%G ru
%F TMF_1979_38_2_a8
D. Ya. Petrina. Mathematical description of the evolution of infinite systems of classical statistical physics.~I. Locally perturbed one-dimensional systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 38 (1979) no. 2, pp. 230-250. http://geodesic.mathdoc.fr/item/TMF_1979_38_2_a8/