Mathematical description of the evolution of infinite systems of classical statistical physics. I. Locally perturbed one-dimensional systems
Teoretičeskaâ i matematičeskaâ fizika, Tome 38 (1979) no. 2, pp. 230-250 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An infinite one-dimensional system of elastic spheres is considered. A solution of the Bogolyubov equations is constructed for initial data representing a local perturbation of the equilibrium distribution functions.
@article{TMF_1979_38_2_a8,
     author = {D. Ya. Petrina},
     title = {Mathematical description of the evolution of infinite systems of classical statistical {physics.~I.} {Locally} perturbed one-dimensional systems},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {230--250},
     year = {1979},
     volume = {38},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1979_38_2_a8/}
}
TY  - JOUR
AU  - D. Ya. Petrina
TI  - Mathematical description of the evolution of infinite systems of classical statistical physics. I. Locally perturbed one-dimensional systems
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1979
SP  - 230
EP  - 250
VL  - 38
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1979_38_2_a8/
LA  - ru
ID  - TMF_1979_38_2_a8
ER  - 
%0 Journal Article
%A D. Ya. Petrina
%T Mathematical description of the evolution of infinite systems of classical statistical physics. I. Locally perturbed one-dimensional systems
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1979
%P 230-250
%V 38
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1979_38_2_a8/
%G ru
%F TMF_1979_38_2_a8
D. Ya. Petrina. Mathematical description of the evolution of infinite systems of classical statistical physics. I. Locally perturbed one-dimensional systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 38 (1979) no. 2, pp. 230-250. http://geodesic.mathdoc.fr/item/TMF_1979_38_2_a8/

[1] N. N. Bogolyubov, B. I. Khatset, DAN SSSR, 66 (1949), 321 | MR | Zbl

[2] N. N. Bogolyubov, D. Ya. Petrina, B. I. Khatset, TMF, 1 (1969), 251

[3] D. Ryuel, Statisticheskaya mekhanika, «Mir», 1971

[4] N. N. Bogolyubov, Problemy dinamicheskoi teorii v statisticheskoi fizike, Gostekhizdat, 1946 | MR

[5] D. Ya. Petrina, A. K. Vidybida, Tr. MI AN SSSR, 136 (1975), 370 | MR

[6] G. Gallavotti, O. E. Lanford, J. L. Lebowitz, J. Math. Phys., 11 (1970), 2898 | DOI | MR

[7] Ya. G. Sinai, Yu. M. Sukhov, TMF, 19 (1974), 344 | MR | Zbl

[8] O. E. Lanford, Commun. Math. Phys., 9 (1968), 176 ; 11 (1969), 257 | DOI | MR | Zbl | DOI | MR | Zbl

[9] Ya. G. Sinai, TMF, 11 (1972), 248 ; Вестн. МГУ, 1974, No 1, 152 | MR | MR

[10] E. Presutti, M. Pulvirenti, B. Tirozzi, Commun. Math. Phys., 47 (1976), 81 | DOI | MR

[11] R. L. Dobrushin, J. Fritz, Commun. Math. Phys., 55 (1977), 275 | DOI | MR | Zbl

[12] N. N. Bogolyubov, Preprint OIYaI R-511, 1960; Избранные труды, т. III, «Наукова думка», 1971 | MR

[13] A. K. Vidybida, DAN USSR, ser. «A», 1975, no. 6, 542 | MR

[14] D. Ya. Petrina, A. K. Vidybida, Preprint ITP-73-58E, Kiev, 1973