General properties of potentials for which the Schr\"odinger equation can be solved by means of hypergeometric functions
Teoretičeskaâ i matematičeskaâ fizika, Tome 38 (1979) no. 2, pp. 219-229
Voir la notice de l'article provenant de la source Math-Net.Ru
A general investigation is made into the problem of constructing (for zero angular momentum) the Jost function and $S$ matrix for a family of, potentials that admit solution of the radial Schrödinger equation by means of hypergeometric series. The passage to the limit of the confluent hypergeometric equation leads to potentials with Coulomb asymptotic behavior at infinity. For these potentials, a general expression for the Green's function is given in the form of the product of two Whittaker functions. This makes it possible to gather together the results obtained by a number of authors for potentials of special form specified as explicit functions
of the variable $r$.
@article{TMF_1979_38_2_a7,
author = {G. A. Natanzon},
title = {General properties of potentials for which the {Schr\"odinger} equation can be solved by means of hypergeometric functions},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {219--229},
publisher = {mathdoc},
volume = {38},
number = {2},
year = {1979},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1979_38_2_a7/}
}
TY - JOUR AU - G. A. Natanzon TI - General properties of potentials for which the Schr\"odinger equation can be solved by means of hypergeometric functions JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1979 SP - 219 EP - 229 VL - 38 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1979_38_2_a7/ LA - ru ID - TMF_1979_38_2_a7 ER -
%0 Journal Article %A G. A. Natanzon %T General properties of potentials for which the Schr\"odinger equation can be solved by means of hypergeometric functions %J Teoretičeskaâ i matematičeskaâ fizika %D 1979 %P 219-229 %V 38 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/TMF_1979_38_2_a7/ %G ru %F TMF_1979_38_2_a7
G. A. Natanzon. General properties of potentials for which the Schr\"odinger equation can be solved by means of hypergeometric functions. Teoretičeskaâ i matematičeskaâ fizika, Tome 38 (1979) no. 2, pp. 219-229. http://geodesic.mathdoc.fr/item/TMF_1979_38_2_a7/