Integral equations in the quantum scattering problem for a system of three charged particles
Teoretičeskaâ i matematičeskaâ fizika, Tome 38 (1979) no. 2, pp. 201-218 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Lippmann–Schwinger integral equations are obtained for the operators $R_0$ and $R_\alpha$ in terms of which the kernels of the modified Faddeev integral equations for a system of three charged particles are described. The smoothness properties and the coordinate asymptotic behavior of the kernels of $R_0$ and $R_\alpha$ in the configuration space are investigated.
@article{TMF_1979_38_2_a6,
     author = {S. P. Merkur'ev},
     title = {Integral equations in the quantum scattering problem for a~system of three charged particles},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {201--218},
     year = {1979},
     volume = {38},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1979_38_2_a6/}
}
TY  - JOUR
AU  - S. P. Merkur'ev
TI  - Integral equations in the quantum scattering problem for a system of three charged particles
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1979
SP  - 201
EP  - 218
VL  - 38
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1979_38_2_a6/
LA  - ru
ID  - TMF_1979_38_2_a6
ER  - 
%0 Journal Article
%A S. P. Merkur'ev
%T Integral equations in the quantum scattering problem for a system of three charged particles
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1979
%P 201-218
%V 38
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1979_38_2_a6/
%G ru
%F TMF_1979_38_2_a6
S. P. Merkur'ev. Integral equations in the quantum scattering problem for a system of three charged particles. Teoretičeskaâ i matematičeskaâ fizika, Tome 38 (1979) no. 2, pp. 201-218. http://geodesic.mathdoc.fr/item/TMF_1979_38_2_a6/

[1] S. P. Merkurev, YaF, 24 (1976), 289; препринт ИТФ-100-Р, Киев, 1975

[2] S. P. Merkurev, TMF, 32 (1977), 187 | MR

[3] A. M. Veselova, TMF, 3 (1970), 326

[4] S. P. Merkuriev, C. Gignoux, A. Laverne, Ann. Phys., 99 (1976), 30 | DOI | MR

[5] T. Kato, Teoriya vozmuschenii lineinykh operatorov, «Mir», 1972 | MR | Zbl

[6] L. D. Faddeev, Trudy MIAN SSSR, 69, 1963 | MR | Zbl

[7] G. Beitman, A. Erdeii, Vysshie transtsendentnye funktsii, t. 1, «Nauka», 1973 | MR

[8] R. Nyuton, Teoriya rasseyaniya voln i chastits, «Mir», 1969 | MR

[9] L. Hostler, J. Math. Phys., 11 (1970), 2966 | DOI | MR

[10] I. M. Gelfand, G. E. Shilov, Obobschennye funktsii i deistviya nad nimi, Fizmatgiz, 1959 | MR

[11] V. I. Smirnov, Kurs vysshei matematiki, t. IV, Gostekhizdat, 1951 | MR

[12] M. V. Fedoryuk, Metod perevala, «Nauka», 1977 | MR