Integral equations in the quantum scattering problem for a~system of three charged particles
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 38 (1979) no. 2, pp. 201-218
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Lippmann–Schwinger integral equations are obtained for the operators $R_0$ and $R_\alpha$
in terms of which the kernels of the modified Faddeev integral equations for a system of three charged particles are described. The smoothness properties and the coordinate asymptotic behavior of the kernels of $R_0$ and $R_\alpha$ in the configuration space are investigated.
			
            
            
            
          
        
      @article{TMF_1979_38_2_a6,
     author = {S. P. Merkur'ev},
     title = {Integral equations in the quantum scattering problem for a~system of three charged particles},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {201--218},
     publisher = {mathdoc},
     volume = {38},
     number = {2},
     year = {1979},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1979_38_2_a6/}
}
                      
                      
                    TY - JOUR AU - S. P. Merkur'ev TI - Integral equations in the quantum scattering problem for a~system of three charged particles JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1979 SP - 201 EP - 218 VL - 38 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1979_38_2_a6/ LA - ru ID - TMF_1979_38_2_a6 ER -
S. P. Merkur'ev. Integral equations in the quantum scattering problem for a~system of three charged particles. Teoretičeskaâ i matematičeskaâ fizika, Tome 38 (1979) no. 2, pp. 201-218. http://geodesic.mathdoc.fr/item/TMF_1979_38_2_a6/
