Integrable model of a nonlinear complex scalar field with nontrivial asymptotic behavior of soliton solutions
Teoretičeskaâ i matematičeskaâ fizika, Tome 38 (1979) no. 2, pp. 186-194 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The field theory model in two-dimensional space-time with the Lagrangiaa $$ L=\frac{\vert\partial_{\mu}\psi\vert^2}{1-\lambda^2\vert\psi\vert^2}+m^2(\vert\psi\vert^2-\lambda^{-2}) $$ is studied. It is a completely integrable Hamiltonian system. The explicit form of $N$-soliton solutions with asymptotic behavior $\vert\psi\vert\to\lambda^{-1}$ as $\vert x\vert\to\infty$ is found.
@article{TMF_1979_38_2_a4,
     author = {B. S. Getmanov},
     title = {Integrable model of a~nonlinear complex scalar field with nontrivial asymptotic behavior of soliton solutions},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {186--194},
     year = {1979},
     volume = {38},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1979_38_2_a4/}
}
TY  - JOUR
AU  - B. S. Getmanov
TI  - Integrable model of a nonlinear complex scalar field with nontrivial asymptotic behavior of soliton solutions
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1979
SP  - 186
EP  - 194
VL  - 38
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1979_38_2_a4/
LA  - ru
ID  - TMF_1979_38_2_a4
ER  - 
%0 Journal Article
%A B. S. Getmanov
%T Integrable model of a nonlinear complex scalar field with nontrivial asymptotic behavior of soliton solutions
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1979
%P 186-194
%V 38
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1979_38_2_a4/
%G ru
%F TMF_1979_38_2_a4
B. S. Getmanov. Integrable model of a nonlinear complex scalar field with nontrivial asymptotic behavior of soliton solutions. Teoretičeskaâ i matematičeskaâ fizika, Tome 38 (1979) no. 2, pp. 186-194. http://geodesic.mathdoc.fr/item/TMF_1979_38_2_a4/

[1] V. E. Korepin, L. D. Faddeev, Phys. Rep. (to appear) | MR

[2] M. Ablowitz et al., Stud. in Appl. Math., 53 (1974), 249 | DOI | MR | Zbl

[3] V. E. Zakharov, Glava v kn.: I. A. Kunin, Teoriya uprugikh sred s mikrostrukturoi, «Nauka», 1976 ; V. E. Zakharov, Lecture Notes in Mathematics, «Springer-Verlag», 1977 (to appear) | MR

[4] B. S. Getmanov, Phys. Lett., 66B (1977), 39 | DOI

[5] D. W. McLaughlin, A. C. Scott, J. Math. Phys., 14 (1973), 1817 ; П. П. Кулиш, ТМФ, 26 (1976), 198 | DOI | MR | Zbl

[6] E. A. Kuznetsov, A. V. Mikhailov, TMF, 30 (1977), 303

[7] B. S. Getmanov, Pisma v ZhETF, 25 (1977), 132

[8] R. Hirota, Bäcklund Transformations (Nashville, Tennessee, 1974 Proceedings); Lecture Notes in Mathematics, 515, 1976 | MR | Zbl

[9] K. Pohlmyer, Commun. Math. Phys., 46 (1976), 207 | DOI | MR

[10] F. Lund, T. Regge, Phys. Rev., D14 (1976), 1524 | MR | Zbl

[11] F. Lund, Phys. Rev., D15 (1977), 1540

[12] F. Lund, Phys. Rev. Lett., 38 (1977), 1175 | DOI | MR

[13] P. P. Kulish, TMF, 33 (1977), 272 | MR | Zbl

[14] R. Hirota, J. Satsuma, J. Phys. Soc. Japan, 40 (1976), 611 | DOI | MR | Zbl

[15] P. J. Caudrey et al., Proc. R. Soc. Lond., A351 (1976), 407 | DOI | MR | Zbl

[16] E. B. Bogomolnyi, YaF, 4 (1976), 861 | MR

[17] V. E. Zakharov, A. B. Shabat, ZhETF, 61 (1971), 119

[18] V. E. Zakharov, A. B. Shabat, ZhETF, 64 (1973), 1627

[19] B. S. Getmanov, Preprint OIYaI R2-10208, Dubna, 1976 | Zbl