On the excluded volume problem in linear polymer chains
Teoretičeskaâ i matematičeskaâ fizika, Tome 38 (1979) no. 2, pp. 277-281

Voir la notice de l'article provenant de la source Math-Net.Ru

In the limiting case of small volume effects in linear polymer chains (when $\sqrt{N}v_0/l^3\ll 1$, where $N$ is the number of links in the chain, $v_0$ is the excluded volume of the segment, and $l$ is the length of one link), the distribution function is obtained for the probability of the distance between the ends of the chain. The calculation is made to second order inclusively in the parameter $\sqrt{N}v_0/l^3$.
@article{TMF_1979_38_2_a12,
     author = {V. I. Alkhimov},
     title = {On the excluded volume problem in linear polymer chains},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {277--281},
     publisher = {mathdoc},
     volume = {38},
     number = {2},
     year = {1979},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1979_38_2_a12/}
}
TY  - JOUR
AU  - V. I. Alkhimov
TI  - On the excluded volume problem in linear polymer chains
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1979
SP  - 277
EP  - 281
VL  - 38
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1979_38_2_a12/
LA  - ru
ID  - TMF_1979_38_2_a12
ER  - 
%0 Journal Article
%A V. I. Alkhimov
%T On the excluded volume problem in linear polymer chains
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1979
%P 277-281
%V 38
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1979_38_2_a12/
%G ru
%F TMF_1979_38_2_a12
V. I. Alkhimov. On the excluded volume problem in linear polymer chains. Teoretičeskaâ i matematičeskaâ fizika, Tome 38 (1979) no. 2, pp. 277-281. http://geodesic.mathdoc.fr/item/TMF_1979_38_2_a12/