Hypergeometric partial solutions in the problem of two Coulomb centers
Teoretičeskaâ i matematičeskaâ fizika, Tome 38 (1979) no. 2, pp. 263-266
Cet article a éte moissonné depuis la source Math-Net.Ru
It is shown that for $m=1$, $\lambda=(z_1\pm z_2)R$ the Coulomb spheroidal functions can be expressed in terms of Whittaker functions. New partial solutions are constructed in the problem of two Coulomb centers.
@article{TMF_1979_38_2_a10,
author = {Yu. N. Demkov and I. V. Komarov},
title = {Hypergeometric partial solutions in the problem of two {Coulomb} centers},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {263--266},
year = {1979},
volume = {38},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1979_38_2_a10/}
}
TY - JOUR AU - Yu. N. Demkov AU - I. V. Komarov TI - Hypergeometric partial solutions in the problem of two Coulomb centers JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1979 SP - 263 EP - 266 VL - 38 IS - 2 UR - http://geodesic.mathdoc.fr/item/TMF_1979_38_2_a10/ LA - ru ID - TMF_1979_38_2_a10 ER -
Yu. N. Demkov; I. V. Komarov. Hypergeometric partial solutions in the problem of two Coulomb centers. Teoretičeskaâ i matematičeskaâ fizika, Tome 38 (1979) no. 2, pp. 263-266. http://geodesic.mathdoc.fr/item/TMF_1979_38_2_a10/
[1] I. V. Komarov, L. I. Ponomarev, S. Yu. Slavyanov, Sferoidalnye i kulonovskie sferoidalnye funktsii, «Nauka», 1976 | MR | Zbl
[2] P. F. Truskova, Preprint OIYaI R11-10207, Dubna, 1976
[3] L. I. Ponomarev, L. N. Somov, J. Comp. Phys., 20 (1976), 183 | DOI | MR
[4] Yu. N. Demkov, Pisma ZhETF, 7, 3; (1968), 101 | MR
[5] D. I. Abramov, I. V. Komarov, TMF, 29 (1976), 235 | MR | Zbl