Hypergeometric partial solutions in the problem of two Coulomb centers
Teoretičeskaâ i matematičeskaâ fizika, Tome 38 (1979) no. 2, pp. 263-266

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that for $m=1$, $\lambda=(z_1\pm z_2)R$ the Coulomb spheroidal functions can be expressed in terms of Whittaker functions. New partial solutions are constructed in the problem of two Coulomb centers.
@article{TMF_1979_38_2_a10,
     author = {Yu. N. Demkov and I. V. Komarov},
     title = {Hypergeometric partial solutions in the problem of two {Coulomb} centers},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {263--266},
     publisher = {mathdoc},
     volume = {38},
     number = {2},
     year = {1979},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1979_38_2_a10/}
}
TY  - JOUR
AU  - Yu. N. Demkov
AU  - I. V. Komarov
TI  - Hypergeometric partial solutions in the problem of two Coulomb centers
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1979
SP  - 263
EP  - 266
VL  - 38
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1979_38_2_a10/
LA  - ru
ID  - TMF_1979_38_2_a10
ER  - 
%0 Journal Article
%A Yu. N. Demkov
%A I. V. Komarov
%T Hypergeometric partial solutions in the problem of two Coulomb centers
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1979
%P 263-266
%V 38
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1979_38_2_a10/
%G ru
%F TMF_1979_38_2_a10
Yu. N. Demkov; I. V. Komarov. Hypergeometric partial solutions in the problem of two Coulomb centers. Teoretičeskaâ i matematičeskaâ fizika, Tome 38 (1979) no. 2, pp. 263-266. http://geodesic.mathdoc.fr/item/TMF_1979_38_2_a10/