Hypergeometric partial solutions in the problem of two Coulomb centers
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 38 (1979) no. 2, pp. 263-266
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			It is shown that for $m=1$, $\lambda=(z_1\pm z_2)R$ the Coulomb spheroidal functions can be
expressed in terms of Whittaker functions. New partial solutions are constructed in the problem of two Coulomb centers.
			
            
            
            
          
        
      @article{TMF_1979_38_2_a10,
     author = {Yu. N. Demkov and I. V. Komarov},
     title = {Hypergeometric partial solutions in the problem of two {Coulomb} centers},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {263--266},
     publisher = {mathdoc},
     volume = {38},
     number = {2},
     year = {1979},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1979_38_2_a10/}
}
                      
                      
                    TY - JOUR AU - Yu. N. Demkov AU - I. V. Komarov TI - Hypergeometric partial solutions in the problem of two Coulomb centers JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1979 SP - 263 EP - 266 VL - 38 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1979_38_2_a10/ LA - ru ID - TMF_1979_38_2_a10 ER -
Yu. N. Demkov; I. V. Komarov. Hypergeometric partial solutions in the problem of two Coulomb centers. Teoretičeskaâ i matematičeskaâ fizika, Tome 38 (1979) no. 2, pp. 263-266. http://geodesic.mathdoc.fr/item/TMF_1979_38_2_a10/
