Self-adjoint phase operator
Teoretičeskaâ i matematičeskaâ fizika, Tome 38 (1979) no. 1, pp. 58-70
Voir la notice de l'article provenant de la source Math-Net.Ru
Quantization of action-angle variables is discussed. A self-adjoint phase operator is
constructed for the harmonic oscillator, and some of its properties are investigated.
The relative phase operator for two independent oscillators is described. Examples
of a self-adjoint phase operator are given for reducible Weyl systems.
@article{TMF_1979_38_1_a5,
author = {A. L. Alimov and E. V. Damaskinsky},
title = {Self-adjoint phase operator},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {58--70},
publisher = {mathdoc},
volume = {38},
number = {1},
year = {1979},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1979_38_1_a5/}
}
A. L. Alimov; E. V. Damaskinsky. Self-adjoint phase operator. Teoretičeskaâ i matematičeskaâ fizika, Tome 38 (1979) no. 1, pp. 58-70. http://geodesic.mathdoc.fr/item/TMF_1979_38_1_a5/