Self-adjoint phase operator
Teoretičeskaâ i matematičeskaâ fizika, Tome 38 (1979) no. 1, pp. 58-70

Voir la notice de l'article provenant de la source Math-Net.Ru

Quantization of action-angle variables is discussed. A self-adjoint phase operator is constructed for the harmonic oscillator, and some of its properties are investigated. The relative phase operator for two independent oscillators is described. Examples of a self-adjoint phase operator are given for reducible Weyl systems.
@article{TMF_1979_38_1_a5,
     author = {A. L. Alimov and E. V. Damaskinsky},
     title = {Self-adjoint phase operator},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {58--70},
     publisher = {mathdoc},
     volume = {38},
     number = {1},
     year = {1979},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1979_38_1_a5/}
}
TY  - JOUR
AU  - A. L. Alimov
AU  - E. V. Damaskinsky
TI  - Self-adjoint phase operator
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1979
SP  - 58
EP  - 70
VL  - 38
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1979_38_1_a5/
LA  - ru
ID  - TMF_1979_38_1_a5
ER  - 
%0 Journal Article
%A A. L. Alimov
%A E. V. Damaskinsky
%T Self-adjoint phase operator
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1979
%P 58-70
%V 38
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1979_38_1_a5/
%G ru
%F TMF_1979_38_1_a5
A. L. Alimov; E. V. Damaskinsky. Self-adjoint phase operator. Teoretičeskaâ i matematičeskaâ fizika, Tome 38 (1979) no. 1, pp. 58-70. http://geodesic.mathdoc.fr/item/TMF_1979_38_1_a5/