Analytic properties of the inclusive cross section in the scattering angle in a class of ladder models with dynamical symmetry
Teoretičeskaâ i matematičeskaâ fizika, Tome 38 (1979) no. 1, pp. 48-57
Cet article a éte moissonné depuis la source Math-Net.Ru
An investigation is made into the analytic properties of the single-particle inclusive cross section in the variable $\cos\theta$ ($\theta$ is the c. m. s. scattering angle) for ladder models with the dynamical symmetry $O(4,1)$. The analyticity domain is a plane with cuts along the real axis. The position of the singularities nearest the origin agrees with the conjecture made by Logunov and Mestvirishvili [2].
@article{TMF_1979_38_1_a4,
author = {V. Yu. D'yakonov and V. E. Rochev and S. N. Storchak},
title = {Analytic properties of the inclusive cross section in the scattering angle in a~class of ladder models with dynamical symmetry},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {48--57},
year = {1979},
volume = {38},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1979_38_1_a4/}
}
TY - JOUR AU - V. Yu. D'yakonov AU - V. E. Rochev AU - S. N. Storchak TI - Analytic properties of the inclusive cross section in the scattering angle in a class of ladder models with dynamical symmetry JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1979 SP - 48 EP - 57 VL - 38 IS - 1 UR - http://geodesic.mathdoc.fr/item/TMF_1979_38_1_a4/ LA - ru ID - TMF_1979_38_1_a4 ER -
%0 Journal Article %A V. Yu. D'yakonov %A V. E. Rochev %A S. N. Storchak %T Analytic properties of the inclusive cross section in the scattering angle in a class of ladder models with dynamical symmetry %J Teoretičeskaâ i matematičeskaâ fizika %D 1979 %P 48-57 %V 38 %N 1 %U http://geodesic.mathdoc.fr/item/TMF_1979_38_1_a4/ %G ru %F TMF_1979_38_1_a4
V. Yu. D'yakonov; V. E. Rochev; S. N. Storchak. Analytic properties of the inclusive cross section in the scattering angle in a class of ladder models with dynamical symmetry. Teoretičeskaâ i matematičeskaâ fizika, Tome 38 (1979) no. 1, pp. 48-57. http://geodesic.mathdoc.fr/item/TMF_1979_38_1_a4/
[1] A. A. Logunov, M. A. Mestvirishvily, Nguen van Hieu, Phys. Lett., 25B (1967), 617
[2] A. A. Logunov, M. A. Mestvirishvili, TMF, 11 (1972), 203
[3] V. V. Ezhela, A. A. Logunov, M. A. Mestvirishvili, V. A. Petrov, TMF, 15 (1973), 153
[4] A. A. Logunov, M. A. Mestvirishvili, V. A. Petrov, TMF, 21 (1974), 305 | MR
[5] A. A. Logunov, M. A. Mestvirishvili, V. A. Petrov, Obschie printsipy kvantovoi teorii polya i ikh sledstviya, «Nauka», 1977, 183–276 | MR
[6] G. L. Rcheulishvili, Preprint IFVE 72-96, Serpukhov, 1972
[7] V. Yu. Dyakonov, V. E. Rochev, TMF, 32 (1977), 131
[8] A. I. Oksak, V. E. Rochev, TMF, 33 (1977), 327 | MR
[9] G. Beitmen, A. Erdeii, Vysshie transtsendentnye funktsii, t. I, «Nauka», 1973 | MR