Homeopolar excitations in a one-dimensional system of spinless fermions with nonlocal interaction
Teoretičeskaâ i matematičeskaâ fizika, Tome 37 (1978) no. 3, pp. 382-389 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Integral equations are obtained for the ground-state energy $E_0$ and the spectrum of quasihomeopolar excitations $\varepsilon(q)$ in a one-dimensional system of spinless fermions with repulsion at neighboring sites. The fermion density $c$ and the dimensionless coupling constant $\rho=\gamma/2\beta$ vary in the ranges $0\leqslant c\leqslant 1/2$, $0<\rho<\infty$. It is found that the homeopolar excitations have an end point of their spectrum $\varepsilon(\pm2k_F)=0$ $(k_F=\pi c)$ and are symmetric about $k_F$: $\varepsilon(q)=\varepsilon(2\pi c-q)$. Asymptotic expansions for $E_0$ and $\varepsilon(q)$ as $\rho\to\infty$ are obtained. A possible connection between the zeros of $\varepsilon(q)$ and the breaking of translational symmetry of the lattice with respect to the formation of a superlattice with period $(2k_F)^{-1}$ is discussed.
@article{TMF_1978_37_3_a8,
     author = {A. A. Ovchinnikov and V. A. Onischuk},
     title = {Homeopolar excitations in a~one-dimensional system of spinless fermions with nonlocal interaction},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {382--389},
     year = {1978},
     volume = {37},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1978_37_3_a8/}
}
TY  - JOUR
AU  - A. A. Ovchinnikov
AU  - V. A. Onischuk
TI  - Homeopolar excitations in a one-dimensional system of spinless fermions with nonlocal interaction
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1978
SP  - 382
EP  - 389
VL  - 37
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1978_37_3_a8/
LA  - ru
ID  - TMF_1978_37_3_a8
ER  - 
%0 Journal Article
%A A. A. Ovchinnikov
%A V. A. Onischuk
%T Homeopolar excitations in a one-dimensional system of spinless fermions with nonlocal interaction
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1978
%P 382-389
%V 37
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1978_37_3_a8/
%G ru
%F TMF_1978_37_3_a8
A. A. Ovchinnikov; V. A. Onischuk. Homeopolar excitations in a one-dimensional system of spinless fermions with nonlocal interaction. Teoretičeskaâ i matematičeskaâ fizika, Tome 37 (1978) no. 3, pp. 382-389. http://geodesic.mathdoc.fr/item/TMF_1978_37_3_a8/

[1] A. T. Epstein at al., Sol. State Comm., 9 (1971), 1803 | DOI

[2] A. A. Ovchinnikov, ZhETF, 64 (1973), 343

[3] D. Mattis, Teoriya magnetizma, «Mir», 1967

[4] H. Bete, Z. Physik, 71 (1931), 205 ; L. Hulten, Ark. Mat. Ast. Fysik, 26A (1938), 11 | DOI

[5] R. Ohrbach, Phys. Rev., 112 (1958), 309 | DOI

[6] J. des Cloizeaux, J. Pirson, Phys. Rev., 128 (1962), 213 | DOI

[7] J. des Cloizeaux, M. Gaudin, J. Math. Phys., 7 (1966), 1384 | DOI

[8] A. A. Ovchinnikov, ZhETF, 56 (1969), 1354 | MR

[9] A. O. Gelfond, Ischislenie konechnykh raznostei, Fizmatgiz, 1959 | MR

[10] A. M. Afanasev, Yu. M. Kagan, ZhETF, 43 (1962), 1456 | Zbl

[11] D. C. Mattis, W. D. Langer, Phys. Rev. Lett., 25 (1970), 376 | DOI

[12] M. J. Rice, S. Strässler, Sd. State Comm., 13 (1973), 125 | DOI

[13] A. A. Ovchinnikov, I. I. Ukrainskii, G. F. Kventtsel, UFN, 108:1 (1972), 81 | DOI