WKB method for three-term recursion relations and quasienergies of an~anharmonic oscillator
Teoretičeskaâ i matematičeskaâ fizika, Tome 37 (1978) no. 3, pp. 355-370
Voir la notice de l'article provenant de la source Math-Net.Ru
An investigation is made of approximate solutions of three-term recursion relations with
slowly varying coefficients that have a form similar to the WKB solutions of second-order
differential equations. Potential curves for a recursion relation are introduced, and the
matching conditions at simple and singular turning points are analyzed. Quantization
rules (of the Bohr–Sommerfeld type) are formulated, and this makes it possible to find
the eigenvalues and eigenvectors of tridiagonal matrices. The method is applied to the
analysis of the equation that describes the state of an anharmonic oscillator in a resonant
periodic field.
@article{TMF_1978_37_3_a6,
author = {P. A. Braun},
title = {WKB method for three-term recursion relations and quasienergies of an~anharmonic oscillator},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {355--370},
publisher = {mathdoc},
volume = {37},
number = {3},
year = {1978},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1978_37_3_a6/}
}
TY - JOUR AU - P. A. Braun TI - WKB method for three-term recursion relations and quasienergies of an~anharmonic oscillator JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1978 SP - 355 EP - 370 VL - 37 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1978_37_3_a6/ LA - ru ID - TMF_1978_37_3_a6 ER -
P. A. Braun. WKB method for three-term recursion relations and quasienergies of an~anharmonic oscillator. Teoretičeskaâ i matematičeskaâ fizika, Tome 37 (1978) no. 3, pp. 355-370. http://geodesic.mathdoc.fr/item/TMF_1978_37_3_a6/