WKB method for three-term recursion relations and quasienergies of an anharmonic oscillator
Teoretičeskaâ i matematičeskaâ fizika, Tome 37 (1978) no. 3, pp. 355-370 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An investigation is made of approximate solutions of three-term recursion relations with slowly varying coefficients that have a form similar to the WKB solutions of second-order differential equations. Potential curves for a recursion relation are introduced, and the matching conditions at simple and singular turning points are analyzed. Quantization rules (of the Bohr–Sommerfeld type) are formulated, and this makes it possible to find the eigenvalues and eigenvectors of tridiagonal matrices. The method is applied to the analysis of the equation that describes the state of an anharmonic oscillator in a resonant periodic field.
@article{TMF_1978_37_3_a6,
     author = {P. A. Braun},
     title = {WKB method for three-term recursion relations and quasienergies of an~anharmonic oscillator},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {355--370},
     year = {1978},
     volume = {37},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1978_37_3_a6/}
}
TY  - JOUR
AU  - P. A. Braun
TI  - WKB method for three-term recursion relations and quasienergies of an anharmonic oscillator
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1978
SP  - 355
EP  - 370
VL  - 37
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1978_37_3_a6/
LA  - ru
ID  - TMF_1978_37_3_a6
ER  - 
%0 Journal Article
%A P. A. Braun
%T WKB method for three-term recursion relations and quasienergies of an anharmonic oscillator
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1978
%P 355-370
%V 37
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1978_37_3_a6/
%G ru
%F TMF_1978_37_3_a6
P. A. Braun. WKB method for three-term recursion relations and quasienergies of an anharmonic oscillator. Teoretičeskaâ i matematičeskaâ fizika, Tome 37 (1978) no. 3, pp. 355-370. http://geodesic.mathdoc.fr/item/TMF_1978_37_3_a6/

[1] I. V. Komarov, L. I. Ponomarev, S. Yu. Slavyanov, Sferoidalnye i kulonovskie sferoidalnye funktsii, «Nauka», 1976 | MR | Zbl

[2] A. K. Kazanskii, V. N. Ostrovskii, E. A. Solovev, ZhETF, 65 (1973), 583

[3] V. A. Kravchenko, A. S. Prostnev, DAN SSSR, 211 (1973), 75

[4] V. P. Makarov, M. V. Fedorov, ZhETF, 70 (1976), 1185

[5] M. V. Fedorov, ZhETF, 73 (1977), 134

[6] A. I. Akhiezer, G. Ya. Lyubarskii, A. E. Pargamannik, Teoriya i raschet lineinykh uskoritelei, Sb., Gosatomizdat, 1962

[7] A. B. Vasileva, Trudy seminara po teorii diff. uravnenii s otklonyayuschimsya argumentom, 5 (1967), 21 | MR | Zbl

[8] G. A. Tsyganov, Diff. uravneniya, 10 (1974), 1312 | Zbl

[9] V. P. Maslov, Operatornye metody, «Nauka», 1973 | MR

[10] K. Schulten, R. G. Gordon, J. Math. Phys., 16 (1975), 1970 | MR

[11] A. O. Gelfond, Ischislenie konechnykh raznostei, «Nauka», 1967 | MR

[12] I. S. Gradshtein, I. M. Ryzhik, Tablitsy integralov, summ, ryadov i proizvedenii, Fizmatgiz, 1962 | MR

[13] G. Sege, Ortogonalnye mnogochleny, Fizmatgiz, 1962

[14] V. N. Sazonov, V. Yu. Finkelshtein, DAN SSSR, 231 (1976), 78

[15] V. N. Sazonov, TMF, 31 (1977), 107 | MR

[16] L. D. Landau, E. M. Lifshits, Mekhanika, «Nauka», 1974 | MR

[17] A. I. Baz, Ya. B. Zeldovich, A. M. Perelomov, Rasseyanie, reaktsii i raspady v nerelyativistskoi kvantovoi mekhanike, «Nauka», 1971 | Zbl

[18] N. L. Manakov, L. N. Rappoport, A. G. Fainshtein, TMF, 30 (1977), 395