Breaking of conformal symmetry and quantization in curved spacetime
Teoretičeskaâ i matematičeskaâ fizika, Tome 37 (1978) no. 3, pp. 347-354 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The quantum theory of a self-interacting massless scalar field is considered in “expanding” and Rindler coordinates in Minkowski spacetime. It is shown that in such a theory there is spontaneous breaking of conformal symmetry (and, in the case of a complex field, of gauge symmetry as well). This leads to the appearance of nonzero vacuum expectation values of the energy-momentum tensor of the field and to a corresponding change in the spacetime geometry. The geometry of a self-consistent model is found.
@article{TMF_1978_37_3_a5,
     author = {A. A. Grib and V. M. Mostepanenko and V. M. Frolov},
     title = {Breaking of conformal symmetry and quantization in curved spacetime},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {347--354},
     year = {1978},
     volume = {37},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1978_37_3_a5/}
}
TY  - JOUR
AU  - A. A. Grib
AU  - V. M. Mostepanenko
AU  - V. M. Frolov
TI  - Breaking of conformal symmetry and quantization in curved spacetime
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1978
SP  - 347
EP  - 354
VL  - 37
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1978_37_3_a5/
LA  - ru
ID  - TMF_1978_37_3_a5
ER  - 
%0 Journal Article
%A A. A. Grib
%A V. M. Mostepanenko
%A V. M. Frolov
%T Breaking of conformal symmetry and quantization in curved spacetime
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1978
%P 347-354
%V 37
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1978_37_3_a5/
%G ru
%F TMF_1978_37_3_a5
A. A. Grib; V. M. Mostepanenko; V. M. Frolov. Breaking of conformal symmetry and quantization in curved spacetime. Teoretičeskaâ i matematičeskaâ fizika, Tome 37 (1978) no. 3, pp. 347-354. http://geodesic.mathdoc.fr/item/TMF_1978_37_3_a5/

[1] S. Fubini, Nuovo Cim., A34 (1976), 521 | DOI

[2] V. De Alfaro, S. Fubini, G. Furlan, Phys. Lett., 65B (1976), 163 | DOI

[3] S. A. Fulling, Phys. Rev., D7 (1973), 2850

[4] A. A. Grib, B. A. Levitskii, V. M. Mostepanenko, TMF, 19 (1974), 59 | MR

[5] G. Gibbons, S. Hawking, Phys. Rev., D15 (1977), 2738 | MR

[6] L. Castell, Phys. Rev., D6 (1972), 536

[7] N. N. Moiseev, Asimptoticheskie metody nelineinoi mekhaniki, «Nauka», 1969 | MR | Zbl

[8] N. N. Bogolyubov, Yu. A. Mitropolskii, Asimptoticheskie metody v teorii nelineinykh kolebanii, «Nauka», 1974 | MR

[9] A. A. Grib, V. M. Mostepanenko, Pisma v ZhETF, 25 (1977), 302

[10] A. A. Grib, V. M. Mostepanenko, V. M. Frolov, TMF, 33 (1977), 42

[11] A. A. Grib, V. M. Mostepanenko, V. M. Frolov, Preprint IFVE, OTF 78-44, 1978

[12] I. T. Lopuszanski, Int. Center Preprint, 77/77, Trieste