Hamiltonian algebras
Teoretičeskaâ i matematičeskaâ fizika, Tome 37 (1978) no. 3, pp. 336-346
Voir la notice de l'article provenant de la source Math-Net.Ru
Suppose we are given a Lie algebra of functions of a finite number of variables of the
form $[A(x),B(x)]=\int\widetilde A(k)\widetilde B(p)\exp\{i(k+p)x\}\alpha(k\vert p)dkdp$, where $\widetilde A$ and $\widetilde B$ are the Fourier transforms of $A$ and $B$. Then the function $\alpha$ satisfies the functional equations $\alpha(k_1\vert k_2)\alpha(k_1+k_2\vert k_3)+\alpha(k_2\vert k_3)\alpha(k_2+k_3\vert k_1)+\alpha(k_3\vert k_1)\alpha(k_3+k_1\vert k_2)=0$, $\alpha(k\vert p)=-\alpha(p\vert k)$. All solutions of these equations are found under the assumption that $\frac{\partial^{n}\alpha}{\partial x^n}
(x\vert 0)\not\equiv 0$ for some $n$ is $\alpha-n$ times continuously differentiable in some neighborhood of the origin. The obtained solutions give all Lie algebras of this form, in particular all algebras of polynomials. All nearly canonical Hamiltonian algebras [1] are found.
@article{TMF_1978_37_3_a4,
author = {G. K. Tolokonnikov},
title = {Hamiltonian algebras},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {336--346},
publisher = {mathdoc},
volume = {37},
number = {3},
year = {1978},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1978_37_3_a4/}
}
G. K. Tolokonnikov. Hamiltonian algebras. Teoretičeskaâ i matematičeskaâ fizika, Tome 37 (1978) no. 3, pp. 336-346. http://geodesic.mathdoc.fr/item/TMF_1978_37_3_a4/