Quantization in the neighborhood of a classical solution in a nonlinear $O(3)$-invariant theory
Teoretičeskaâ i matematičeskaâ fizika, Tome 37 (1978) no. 3, pp. 326-335
Cet article a éte moissonné depuis la source Math-Net.Ru
In the framework of perturbation theory in inverse powers of the coupling constant, a Bogolyubov transformation is used to quantize an essentially nonlinear field that interacts nonlinearly with a fixed source.
@article{TMF_1978_37_3_a3,
author = {O. D. Timofeevskaya},
title = {Quantization in the neighborhood of a~classical solution in a~nonlinear $O(3)$-invariant theory},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {326--335},
year = {1978},
volume = {37},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1978_37_3_a3/}
}
TY - JOUR AU - O. D. Timofeevskaya TI - Quantization in the neighborhood of a classical solution in a nonlinear $O(3)$-invariant theory JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1978 SP - 326 EP - 335 VL - 37 IS - 3 UR - http://geodesic.mathdoc.fr/item/TMF_1978_37_3_a3/ LA - ru ID - TMF_1978_37_3_a3 ER -
O. D. Timofeevskaya. Quantization in the neighborhood of a classical solution in a nonlinear $O(3)$-invariant theory. Teoretičeskaâ i matematičeskaâ fizika, Tome 37 (1978) no. 3, pp. 326-335. http://geodesic.mathdoc.fr/item/TMF_1978_37_3_a3/
[1] N. N. Bogolyubov, UMZh, 2 (1950), 3 ; Избр. труды, т. 2, «Наукова думка», Киев, 1970 | MR | MR | Zbl
[2] E. P. Solodovnikova, A. N. Tavkhelidze, O. A. Khrustalev, TMF, 11 (1972), 317
[3] A. V. Razumov, O. A. Khrustalev, TMF, 29 (1976), 300 | MR
[4] N. N. Bogolyubov, D. V. Shirkov, Vvedenie v teoriyu kvantovannykh polei, «Nauka», 1976 | MR
[5] N. E. Tyurin, A. V. Shurgaya, Preprint IFVE 72-15, Serpukhov, 1972 | MR