Renormalization group and the ladder approximation in field theory
Teoretičeskaâ i matematičeskaâ fizika, Tome 37 (1978) no. 3, pp. 416-422
Cet article a éte moissonné depuis la source Math-Net.Ru
For the example of the field theory ${\lambda\varphi_6}^3$, a renormalized equation is obtained for the mass operator in the ladder (rainbow) approximation. The Gell-Mann–Low functions and the anomalous dimension are calculated in the same approximation.
@article{TMF_1978_37_3_a11,
author = {K. G. Klimenko},
title = {Renormalization group and the ladder approximation in field theory},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {416--422},
year = {1978},
volume = {37},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1978_37_3_a11/}
}
K. G. Klimenko. Renormalization group and the ladder approximation in field theory. Teoretičeskaâ i matematičeskaâ fizika, Tome 37 (1978) no. 3, pp. 416-422. http://geodesic.mathdoc.fr/item/TMF_1978_37_3_a11/
[1] N. N. Bogolyubov, D. V. Shirkov, Vvedenie v teoriyu kvantovannykh polei, «Nauka», 1976 | MR
[2] M. Gell-Mann, F. E. Low, Phys. Rev., 95 (1954), 1300 | DOI | MR | Zbl
[3] S. L. Adler, Phys. Rev., D5 (1972), 3021
[4] L. N. Lipatov, ZhETF, 71 (1976), 2010
[5] K. D. Rothe, Nucl. Phys., B104 (1976), 344 | DOI
[6] S. Edwards, Phys. Rev., 90 (1953), 284 | DOI | MR | Zbl
[7] B. A. Arbuzov, A. T. Filippov, Nuovo Cim., 38 (1965), 798 | DOI | MR
[8] F. J. Dyson, Phys. Rev., 75 (1949), 1736 | DOI | MR | Zbl
[9] K. Symanzik, Commun. Math. Phys., 18 (1970), 227 | DOI | MR | Zbl
[10] A. J. Macfarlane, G. Woo, Nucl. Phys., B77 (1974), 91 | DOI
[11] A. A. Vladimirov, TMF, 25 (1975), 335