Dynamical behavior of two-component spin systems in an alternating magnetic field
Teoretičeskaâ i matematičeskaâ fizika, Tome 37 (1978) no. 3, pp. 402-415 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The nonequilibrium statistical operator method is used to consider the dynamics of a two-component isothermal magnetic system in an alternating magnetic field. Exact coupled equations of motion are obtained for the small deviations from equilibrium of the magnetizations of the subsystems, together with dispersion relations for the spectra of the normal modes and exact general expressions for the matrix Green's functions, the dynamic magnetic susceptibility, and the power absorbed in the external field. A self-consistent approach is formulated for the calculation of these quantities in terms of the exact characteristics of the noninteracting subsystems.
@article{TMF_1978_37_3_a10,
     author = {V. P. Kalashnikov and N. V. Kozhevnikov},
     title = {Dynamical behavior of two-component spin systems in an~alternating magnetic field},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {402--415},
     year = {1978},
     volume = {37},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1978_37_3_a10/}
}
TY  - JOUR
AU  - V. P. Kalashnikov
AU  - N. V. Kozhevnikov
TI  - Dynamical behavior of two-component spin systems in an alternating magnetic field
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1978
SP  - 402
EP  - 415
VL  - 37
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1978_37_3_a10/
LA  - ru
ID  - TMF_1978_37_3_a10
ER  - 
%0 Journal Article
%A V. P. Kalashnikov
%A N. V. Kozhevnikov
%T Dynamical behavior of two-component spin systems in an alternating magnetic field
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1978
%P 402-415
%V 37
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1978_37_3_a10/
%G ru
%F TMF_1978_37_3_a10
V. P. Kalashnikov; N. V. Kozhevnikov. Dynamical behavior of two-component spin systems in an alternating magnetic field. Teoretičeskaâ i matematičeskaâ fizika, Tome 37 (1978) no. 3, pp. 402-415. http://geodesic.mathdoc.fr/item/TMF_1978_37_3_a10/

[1] Ferromagnitnyi rezonans, Sb. statei, ed. S. V. Vonsovskii, Fizmatgiz, 1961

[2] A. G. Gurevich, Magnitnyi rezonans v ferritakh i antiferromagnetikakh, «Nauka», 1973

[3] S. V. Tyablikov, Metody kvantovoi teorii magnetizma, «Nauka», 1961 | MR | Zbl

[4] E. A. Turov, M. P. Petrov, Yadernyi magnitnyi rezonans v ferro- i antiferromagnetikakh, «Nauka», 1969

[5] Yu. A. Izyumov, F. A. Kassan-ogly, Yu. N. Skryabin, Polevye metody v teorii magnetizma, «Nauka», 1974

[6] D. C. Langreth, J. W. Wilkins, Phys. Rev., B6 (1972), 3189 ; J. Sweer, D. C. Langreth, J. W. Wilkins, Phys. Rev., B13 (1976), 192 | DOI | DOI

[7] H. Mori, K. Kawasaki, Progr. Theor. Phys., 28 (1962), 971 | DOI | MR | Zbl

[8] D. Kivelson, K. Ogan, Adv. in Magnetic Resonance, v. 7, N.-Y., 1974

[9] H. Mori, Progr. Theor. Phys., 33 (1965), 423 | DOI | MR | Zbl

[10] M. B. Walker, Phys. Rev., 176 (1968), 432 ; B1 (1970), 3690 | DOI | DOI

[11] H. J. Spencer, R. Orbach, Phys. Rev., 179 (1969), 683 | DOI

[12] V. P. Kalashnikov, DAN SSSR, 219 (1974), 59

[13] V. P. Kalashnikov, M. I. Auslender, FMM, 44 (1977), 710

[14] R. Kubo, Lectures in Theor. Phys., v. 1, N.-Y., 1959

[15] V. P. Kalashnikov, Preprint OIYaI P-7803, Dubna, 1974 | Zbl

[16] D. N. Zubarev, V. P. Kalashnikov, TMF, 3 (1970), 126 | MR

[17] V. P. Kalashnikov, TMF, 9, 94 ; (1971), 406 | MR

[18] V. P. Kalashnikov, TMF, 34 (1978), 412

[19] R. M. Uait, Kvantovaya teoriya magnetizma, «Mir», 1972

[20] P. C. Hohenberg, B. J. Halperin, Rev. Mod. Phys., 49 (1977), 436 | DOI

[21] T. Sasada, H. Hasegava, Progr. Theor. Phys., 45 (1971), 1072 | DOI