Stability of regularizations of the Schrödinger operator with singular repulsive potential
Teoretičeskaâ i matematičeskaâ fizika, Tome 37 (1978) no. 2, pp. 237-242 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A study is made of the stability of regularizations of a $d$-dimensional Schrödinger operator with singular repulsive potential under the assumption that the set of singularities of the potential is sufficiently thin. It is shown that for $d\geqslant2$ any positive regularization is stable and that for $d\geqslant4$ any regularization is stable. This means, in particular, that for potentials with discrete set of isolated singularities the Klauder effect can occur only in a one-dimensional quantum-mechanical system.
@article{TMF_1978_37_2_a6,
     author = {I. D. Chueshov},
     title = {Stability of regularizations of the {Schr\"odinger} operator with singular repulsive potential},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {237--242},
     year = {1978},
     volume = {37},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1978_37_2_a6/}
}
TY  - JOUR
AU  - I. D. Chueshov
TI  - Stability of regularizations of the Schrödinger operator with singular repulsive potential
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1978
SP  - 237
EP  - 242
VL  - 37
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1978_37_2_a6/
LA  - ru
ID  - TMF_1978_37_2_a6
ER  - 
%0 Journal Article
%A I. D. Chueshov
%T Stability of regularizations of the Schrödinger operator with singular repulsive potential
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1978
%P 237-242
%V 37
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1978_37_2_a6/
%G ru
%F TMF_1978_37_2_a6
I. D. Chueshov. Stability of regularizations of the Schrödinger operator with singular repulsive potential. Teoretičeskaâ i matematičeskaâ fizika, Tome 37 (1978) no. 2, pp. 237-242. http://geodesic.mathdoc.fr/item/TMF_1978_37_2_a6/

[1] H. Ezawa, J. R. Klauder, L. A. Shepp, J. Math. Phys., 16 (1975), 783 | DOI | MR

[2] J. R. Klauder, Phys. Lett., 47B (1973), 523 | DOI

[3] B. DeFacio, C. L. Hammer, J. Math. Phys., 15 (1974), 1071 | DOI | MR

[4] B. Simon, J. Funct. Anal., 14 (1973), 295 | DOI | MR | Zbl

[5] C. N. Friedman, J. Funct. Anal., 10 (1972), 346 | DOI | MR | Zbl

[6] I. D. Chueshov, Mat. zametki, 20 (1976), 675 | MR | Zbl

[7] T. Kato, Teoriya vozmuschenii lineinykh operatorov, «Mir», 1972 | MR | Zbl

[8] M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki, t. 2, «Mir», 1978 | MR

[9] V. A. Zagrebnov, Ann. Phys., 102 (1976), 108 | DOI | MR

[10] D. W. Robinson, Ann. Inst. Henri Poincare, 21 (1974), 185 | MR

[11] P. Ferrero, O. de Pazzis, D. W. Robinson, Ann. Inst. Henri Poincare, 21 (1974), 217 | MR

[12] N. S. Landkof, Osnovy sovremennoi teorii potentsiala, «Nauka», 1966 | MR | Zbl