Spontaneous breaking of $CP$-symmetry in a nonstationary isotropic metric
Teoretičeskaâ i matematičeskaâ fizika, Tome 37 (1978) no. 2, pp. 212-223 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is shown that when a massless scalar field and a massive fermion field interact in a spacetime with homogeneous isotropic metric of open type an effect of spontaneous breaking of $P$ and $CP$ symmetry arises. The method of diagonalization of the Hamiltonian by Bogolyubov transformations is used to obtain expressions for the number density of the produced pairs, the density of the chiral charge, and the pseudoscalar density of fermions. The correction to the number density of produced particles resulting from the effect of the spontaneous symmetry breaking is calculated.
@article{TMF_1978_37_2_a4,
     author = {A. A. Grib and V. M. Mostepanenko and V. M. Frolov},
     title = {Spontaneous breaking of $CP$-symmetry in a~nonstationary isotropic metric},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {212--223},
     year = {1978},
     volume = {37},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1978_37_2_a4/}
}
TY  - JOUR
AU  - A. A. Grib
AU  - V. M. Mostepanenko
AU  - V. M. Frolov
TI  - Spontaneous breaking of $CP$-symmetry in a nonstationary isotropic metric
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1978
SP  - 212
EP  - 223
VL  - 37
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1978_37_2_a4/
LA  - ru
ID  - TMF_1978_37_2_a4
ER  - 
%0 Journal Article
%A A. A. Grib
%A V. M. Mostepanenko
%A V. M. Frolov
%T Spontaneous breaking of $CP$-symmetry in a nonstationary isotropic metric
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1978
%P 212-223
%V 37
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1978_37_2_a4/
%G ru
%F TMF_1978_37_2_a4
A. A. Grib; V. M. Mostepanenko; V. M. Frolov. Spontaneous breaking of $CP$-symmetry in a nonstationary isotropic metric. Teoretičeskaâ i matematičeskaâ fizika, Tome 37 (1978) no. 2, pp. 212-223. http://geodesic.mathdoc.fr/item/TMF_1978_37_2_a4/

[1] A. A. Grib, V. M. Mostepanenko, Pisma ZhETF, 25 (1977), 302

[2] A. A. Grib, V. M. Mostepanenko, V. M. Frolov, TMF, 33 (1977), 42

[3] B. M. Pontekorvo, Aktualnye problemy teoreticheskoi fiziki, Sb., MGU, 1976, 183

[4] B. A. Arbuzov, ZhETF, 62 (1972), 444

[5] T. D. Lee, Phys. Pep., 9C (1974), 145

[6] N. N. Bogolyubov, DAN SSSR, 119 (1958), 224

[7] I. Yu. Kobzarev, L. B. Okun, I. Ya. Pomeranchuk, YaF, 3 (1966), 1154

[8] S. G. Mamaev, V. M. Mostepanenko, V. M. Frolov, Pisma AZh, 1:9 (1975), 8; ЯФ, 23 (1976), 1119

[9] N. N. Bogolyubov, D. V. Shirkov, Vvedenie v teoriyu kvantovannykh polei, «Nauka», 1973 | MR | Zbl

[10] A. I. Akhiezer, V. B. Berestetskii, Kvantovaya elektrodinamika, «Nauka», 1969 | MR

[11] A. A. Grib, S. C. Mamayev, V. M. Mostepanenko, Gen. Relat. and Gravit., 7 (1976), 535 | DOI | MR

[12] S. G. Mamaev, V. M. Mostepanenko, A. A. Starobinskii, ZhETF, 70 (1976), 1577

[13] I. S. Gradshtein, I. M. Ryzhik, Tablitsy integralov, summ, ryadov i proizvedenii, «Nauka», 1971 | MR

[14] S. G. Mamaev, V. M. Mostepanenko, V. M. Frolov, YaF, 26 (1977), 215

[15] Ya. B. Zeldovich, A. A. Starobinskii, ZhETF, 61 (1971), 2161

[16] B. A. Levitskii, V. M. Mostepanenko, V. M. Frolov, Izv. vuzov, fizika, 1977, no. 2, 29 | MR

[17] N. Ya. Vilenkin, Spetsialnye funktsii i teoriya predstavlenii grupp, «Nauka», 1965 | MR