Some spectral identities for the one-dimensional hill operator
Teoretičeskaâ i matematičeskaâ fizika, Tome 37 (1978) no. 2, pp. 281-288
Cet article a éte moissonné depuis la source Math-Net.Ru
Some relations are obtained between the Bloch functions (Floquet solution), the dispersion $d\lambda/dk$, the effective masses, and the real mass of a particle. In particuiar, it is shown that the sum of the effective masses of a particle converges absolutely and is equal to its real mass.
@article{TMF_1978_37_2_a12,
author = {N. E. Firsova},
title = {Some spectral identities for the one-dimensional hill operator},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {281--288},
year = {1978},
volume = {37},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1978_37_2_a12/}
}
N. E. Firsova. Some spectral identities for the one-dimensional hill operator. Teoretičeskaâ i matematičeskaâ fizika, Tome 37 (1978) no. 2, pp. 281-288. http://geodesic.mathdoc.fr/item/TMF_1978_37_2_a12/
[1] E. Ch. Titchmarsh, Razlozheniya po sobstvennym funktsiyam, svyazannye s differentsialnymi uravneniyami vtorogo poryadka, t. 2, IL, 1961, str. 555 | MR
[2] Dzh. Zaiman, Printsipy teorii tverdogo tela, «Mir», 1974
[3] N. E. Firsova, Matematicheskie voprosy teorii rasprostraneniya voln, no. 7, LGU, 1975, 183 | MR
[4] N. E. Firsova, Matem. zametki, 18 (1975), 831 | MR | Zbl