Reduction of representations of the complementary series of the $2+3$ de Sitter group with respect to the Lorentz group
Teoretičeskaâ i matematičeskaâ fizika, Tome 37 (1978) no. 2, pp. 274-280 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A decomposition into irreducible representations is obtained for the restriction of a unitary representation of the $SO_0(2,3)$ de Sitter group belonging to the complementary series of maximally degenerate representations to the Lorentz group $SO_0(1,3)$.
@article{TMF_1978_37_2_a11,
     author = {V. F. Molchanov},
     title = {Reduction of representations of the complementary series of the $2+3$ {de~Sitter} group with respect to the {Lorentz} group},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {274--280},
     year = {1978},
     volume = {37},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1978_37_2_a11/}
}
TY  - JOUR
AU  - V. F. Molchanov
TI  - Reduction of representations of the complementary series of the $2+3$ de Sitter group with respect to the Lorentz group
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1978
SP  - 274
EP  - 280
VL  - 37
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1978_37_2_a11/
LA  - ru
ID  - TMF_1978_37_2_a11
ER  - 
%0 Journal Article
%A V. F. Molchanov
%T Reduction of representations of the complementary series of the $2+3$ de Sitter group with respect to the Lorentz group
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1978
%P 274-280
%V 37
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1978_37_2_a11/
%G ru
%F TMF_1978_37_2_a11
V. F. Molchanov. Reduction of representations of the complementary series of the $2+3$ de Sitter group with respect to the Lorentz group. Teoretičeskaâ i matematičeskaâ fizika, Tome 37 (1978) no. 2, pp. 274-280. http://geodesic.mathdoc.fr/item/TMF_1978_37_2_a11/

[1] J. Patera, P. Winternitz, H. Zassenhaus, J. Math. Phys., 17 (1976), 717 | DOI | MR

[2] I. M. Lizin, L. A. Shelepin, TMF, 11 (1972), 69 | Zbl

[3] A. Sciarrino, M. Toller, J. Math. Phys., 8 (1967), 1252 | DOI | MR | Zbl

[4] J. Niederle, J. Math. Phys., 8 (1967), 1921 | DOI | MR | Zbl

[5] N. Mukunda, J. Math. Phys., 9 (1968), 50 | DOI | MR | Zbl

[6] N. Mukunda, J. Math. Phys., 9 (1968), 417 | DOI | MR

[7] C. P. Boyer, F. Ardalan, J. Math. Phys., 12 (1971), 2070 | DOI | MR | Zbl

[8] C. P. Boyer, J. Math. Phys., 14 (1973), 609 | DOI | Zbl

[9] V. F. Molchanov, Matem. sb., 99 (141) (1976), 139 | Zbl

[10] R. S. Ismagilov, Tr. Mosk. in-ta el. mash., 2 (1966), 492

[11] I. M. Gelfand, M. I. Graev, N. Ya. Vilenkin, Integralnaya geometriya i svyazannye s nei voprosy teorii predstavlenii, Fizmatgiz, 1962 | MR

[12] N. Limić, J. Niederle, R. Raczka, J. Math. Phys., 8 (1967), 1079 | DOI | MR | Zbl