Deep inelastic asymptotics of the Mandelstam graph
Teoretičeskaâ i matematičeskaâ fizika, Tome 37 (1978) no. 1, pp. 40-47
Cet article a éte moissonné depuis la source Math-Net.Ru
The deep inelastic asymptotic behavior of the Mandelstam graph of perturbation theory is discussed by means of the technique of coordinate representation, in which the deep inelastic asymptotic behavior corresponds to the asymptotic behavior of the corresponding diagram on the light cone. The treatment is given in the region of small values of the scaled variable $1/\omega=-k^2/2kp$ in the framework of the standard $\lambda\varphi^3$-model.
@article{TMF_1978_37_1_a3,
author = {N. I. Usyukina},
title = {Deep inelastic asymptotics of the {Mandelstam} graph},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {40--47},
year = {1978},
volume = {37},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1978_37_1_a3/}
}
N. I. Usyukina. Deep inelastic asymptotics of the Mandelstam graph. Teoretičeskaâ i matematičeskaâ fizika, Tome 37 (1978) no. 1, pp. 40-47. http://geodesic.mathdoc.fr/item/TMF_1978_37_1_a3/
[1] S. Mandelstam, Nuovo. Cim., 30 (1963), 1113 | DOI | MR
[2] B. Hasslacher, D. K. Sinclair, Phys. Rev., D3 (1971), 1770
[3] N. I. Usyukina, TMF, 17 (1973), 359 | Zbl
[4] V. I. Zakharov, N. N. Nikolaev, YaF, 21 (1975), 434
[5] I. M. Gelfand, G. E. Shilov, Obobschennye funktsii i deistviya nad nimi, vyp. 1, Fizmatgiz, 1958 | MR