Frequence spectrum of monochromatic vibrations of a~one-dimensional nonlinear chain of finite length
Teoretičeskaâ i matematičeskaâ fizika, Tome 37 (1978) no. 1, pp. 135-144

Voir la notice de l'article provenant de la source Math-Net.Ru

The example of a one-dimensional elastic chain of finite length of the type of a system with frozen internal rotations is used to study the influence of nonlinearity on the spectrum of etgenvibrations of such a chain. It is shown that the nature of the possible single-particle vibrations depends essentially on the boundary conditions. For certain boundary conditions, one can have new branches whose frequencies lie in the forbidden zone of the harmonic spectrum. The deformation of the harmonic spectrum with increasing energy of the vibrations is analyzed.
@article{TMF_1978_37_1_a12,
     author = {A. S. Kovalev},
     title = {Frequence spectrum of monochromatic vibrations of a~one-dimensional nonlinear chain of finite length},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {135--144},
     publisher = {mathdoc},
     volume = {37},
     number = {1},
     year = {1978},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1978_37_1_a12/}
}
TY  - JOUR
AU  - A. S. Kovalev
TI  - Frequence spectrum of monochromatic vibrations of a~one-dimensional nonlinear chain of finite length
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1978
SP  - 135
EP  - 144
VL  - 37
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1978_37_1_a12/
LA  - ru
ID  - TMF_1978_37_1_a12
ER  - 
%0 Journal Article
%A A. S. Kovalev
%T Frequence spectrum of monochromatic vibrations of a~one-dimensional nonlinear chain of finite length
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1978
%P 135-144
%V 37
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1978_37_1_a12/
%G ru
%F TMF_1978_37_1_a12
A. S. Kovalev. Frequence spectrum of monochromatic vibrations of a~one-dimensional nonlinear chain of finite length. Teoretičeskaâ i matematičeskaâ fizika, Tome 37 (1978) no. 1, pp. 135-144. http://geodesic.mathdoc.fr/item/TMF_1978_37_1_a12/