Theorem on the minimal specific energy for classical systems
Teoretičeskaâ i matematičeskaâ fizika, Tome 37 (1978) no. 1, pp. 130-134 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is shown that, beginning with a certain angular momentum, a further increase in the positive part of the potential does not reduce the specific binding energy in classical systems.
@article{TMF_1978_37_1_a11,
     author = {A. G. Basuev},
     title = {Theorem on the minimal specific energy for classical systems},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {130--134},
     year = {1978},
     volume = {37},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1978_37_1_a11/}
}
TY  - JOUR
AU  - A. G. Basuev
TI  - Theorem on the minimal specific energy for classical systems
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1978
SP  - 130
EP  - 134
VL  - 37
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1978_37_1_a11/
LA  - ru
ID  - TMF_1978_37_1_a11
ER  - 
%0 Journal Article
%A A. G. Basuev
%T Theorem on the minimal specific energy for classical systems
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1978
%P 130-134
%V 37
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1978_37_1_a11/
%G ru
%F TMF_1978_37_1_a11
A. G. Basuev. Theorem on the minimal specific energy for classical systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 37 (1978) no. 1, pp. 130-134. http://geodesic.mathdoc.fr/item/TMF_1978_37_1_a11/

[1] D. Ryuell, Statisticheskaya mekhanika, «Mir», 1971

[2] G. E. Dobrushin, Teoriya veroyatn. i ee prim., 9 (1964), 626 | Zbl

[3] F. Tot, Raspredelenie na sfere, ploskosti i v prostranstve, «Nauka», 1956