On the method of collective variables in the statistical theory of fermi systems of charged particles
Teoretičeskaâ i matematičeskaâ fizika, Tome 37 (1978) no. 1, pp. 118-129 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A representation is obtained for the partition function in the form of a differential operator acting in the space of collective variables $\rho_{km}$ on an exponential with potential energy expressed in these variables. A quantum generalization of the virial expansion is constructed on the basis of this representation. The second virial coefficient is calculated for a nondegenerate gaslike plasma to $e^6$. Degeneracy effects in plasmas are considered near the classical limit $(\lambda/\beta e^2\ll1)$. An expression is found for the electron part of the energy of a metal in the form of a series in the electron-ion interaction.
@article{TMF_1978_37_1_a10,
     author = {G. I. Bigun},
     title = {On the method of collective variables in the statistical theory of fermi systems of charged particles},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {118--129},
     year = {1978},
     volume = {37},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1978_37_1_a10/}
}
TY  - JOUR
AU  - G. I. Bigun
TI  - On the method of collective variables in the statistical theory of fermi systems of charged particles
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1978
SP  - 118
EP  - 129
VL  - 37
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1978_37_1_a10/
LA  - ru
ID  - TMF_1978_37_1_a10
ER  - 
%0 Journal Article
%A G. I. Bigun
%T On the method of collective variables in the statistical theory of fermi systems of charged particles
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1978
%P 118-129
%V 37
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1978_37_1_a10/
%G ru
%F TMF_1978_37_1_a10
G. I. Bigun. On the method of collective variables in the statistical theory of fermi systems of charged particles. Teoretičeskaâ i matematičeskaâ fizika, Tome 37 (1978) no. 1, pp. 118-129. http://geodesic.mathdoc.fr/item/TMF_1978_37_1_a10/

[1] D. N. Zubarev, DAN SSSR, 45 (1954), 757 | MR

[2] N. N. Bogolyubov, D. N. Zubarev, ZhETF, 28 (1955), 129 | MR | Zbl

[3] I. R. Yukhnovskii, ZhETF, 34 (1958), 379

[4] G. Kelbg, Ann. Phys. (DDR), 9, 159 ; (1962), 168 | Zbl | DOI | Zbl

[5] J. P. Straley, Phys. Rev., A6 (1972), 498 ; J. P. Straley, The Theory of Superfluid Helium, Corn. Univ. Press, 1973 | DOI

[6] G. Kelbg, Ann. Phys. (DDR), 12, 219 ; (1964), 354 | MR | MR

[7] I. R. Yukhnovskii, Ukr. fiz. zh., 9, 702; (1964), 827; 12 (1967), 1674 ; препринт ИТФ-71-26Р, Киев, 1971 | MR

[8] A. A. Abrikosov, L. P. Gorkov, I. E. Dzyaloshinskii, Metody kvantovoi teorii polya v statisticheskoi fizike, Fizmatgiz, 1962 | MR | Zbl

[9] W. Ebeling, W. D. Kraeft, D. Kremp, Beitr. Plasmaphys., 10 (1970), 237 ; W. D. Kraeft, D. Kremp, Z. Phys., 208 (1968), 475 ; W. D. Kraeft, D. Kremp, K. Kilimann, Ann. Phys. (DDR), 29 (1973), 178 | DOI | DOI

[10] L. Kadanov, G. Beim, Kvantovaya statisticheskaya mekhanika, IL, 1962

[11] M. S. Cooper, H. E. DeWitt, Phys. Rev., A8 (1973), 1910 | DOI

[12] R. Abe, Progr. Theor. Phys., 22 (1959), 213 | DOI | MR | Zbl

[13] J. Hubbard, Proc. Roy. Soc., A243 (1957), 336 ; Phys. Lett., 25A (1967), 709 | MR | DOI

[14] E. A. Pashitskii, A. M. Gabovich, FMM, 37 (1974), 7

[15] D. N. Tripathy, S. S. Mandal, Phys. Rev., B16 (1977), 231 | DOI

[16] D. N. Zubarev, UFN, 71 (1960), 71 | DOI | MR

[17] E. G. Brovman, Yu. Kagan, UFN, 112 (1974), 369 ; Е. Г. Бровман, А. Холас, ЖЭТФ, 66 (1974), 1877; Ю. Каган, В. В. Пушкарев, А. Холас, ЖЭТФ, 73 (1977), 967 | DOI

[18] M. Hasegawa, J. Phys., F6 (1976), 649 | DOI

[19] Z. A. Gurskii, G. I. Bigun, Ukr. fiz. zh., 17 (1972), 1496

[20] G. I. Bigun, Ukr. fiz. zh., 19 (1974), 1826