Generalized solitons of the Schrödinger equation with unitary nonlinearity
Teoretičeskaâ i matematičeskaâ fizika, Tome 36 (1978) no. 3, pp. 345-351 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Schrödinger equations containing a nonlinear integral term are considered. For some types of “self-interaction potential” an exact solution of soliton type is constructed. An example is given for obtaining an almost-solution in the asymptotic sense by means of harmonic approximation of the potential. A diagram technique is proposed for solving the Cauchy problem perturbatively.
@article{TMF_1978_36_3_a5,
     author = {Vo Khan' Fuk and V. M. Chetverikov},
     title = {Generalized solitons of the {Schr\"odinger} equation with unitary nonlinearity},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {345--351},
     year = {1978},
     volume = {36},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1978_36_3_a5/}
}
TY  - JOUR
AU  - Vo Khan' Fuk
AU  - V. M. Chetverikov
TI  - Generalized solitons of the Schrödinger equation with unitary nonlinearity
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1978
SP  - 345
EP  - 351
VL  - 36
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1978_36_3_a5/
LA  - ru
ID  - TMF_1978_36_3_a5
ER  - 
%0 Journal Article
%A Vo Khan' Fuk
%A V. M. Chetverikov
%T Generalized solitons of the Schrödinger equation with unitary nonlinearity
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1978
%P 345-351
%V 36
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1978_36_3_a5/
%G ru
%F TMF_1978_36_3_a5
Vo Khan' Fuk; V. M. Chetverikov. Generalized solitons of the Schrödinger equation with unitary nonlinearity. Teoretičeskaâ i matematičeskaâ fizika, Tome 36 (1978) no. 3, pp. 345-351. http://geodesic.mathdoc.fr/item/TMF_1978_36_3_a5/

[1] V. P. Maslov, Kompleksnye markovskie tsepi i kontinualnyi integral Feinmana, «Nauka», 1976 | MR

[2] A. S. Shvarts, TMF, 24 (1975), 333

[3] L. D. Landau, E. M. Lifshits, Kvantovaya mekhanika. Nerelyativistskaya teoriya, «Nauka», 1974 | MR

[4] V. E. Zakharov, A. B. Shabat, ZhETF, 64 (1973), 1627

[5] Yu. A. Bychkov, A. P. Prudnikov, Integralnye preobrazovaniya obobschennykh funktsii, «Nauka», 1977 | MR

[6] V. P. Maslov, Kompleksnyi metod VKB v nelineinykh uravneniyakh, «Nauka», 1977 | MR