Invariant properties of weak interactions and the Cabibbo angle in chiral dynamics
Teoretičeskaâ i matematičeskaâ fizika, Tome 36 (1978) no. 3, pp. 324-334 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is shown that if the Cabibbo angle is introduced by an axial (and not vector) rotation about the seventh axis in $SU_3$-space, and it is assumed that the pion is massless before the rotation, the well-known contradiction between the allowed regions of values of the parameters of the broken $SU_3\otimes SU_3$ chiral symmetry can be eliminated. Different models are discussed and an investigation made of the Hamiltonian of the $SU_3\otimes SU_3$ chiral symmetry breaking before the Cabibbo rotation. The results are generalized to $SU_4\otimes SU_4$. The invariance properties of the weak interactions under permutation of the quark isodoublets in the Glashow–Iliopoulos–Maiani model are used. Corresponding unitary transformations are constructed and a theorem proved about the structure of the Hamiltonian of the $SU_4\otimes SU_4$ chiral symmetry breaking.
@article{TMF_1978_36_3_a3,
     author = {A. A. Khelashvili},
     title = {Invariant properties of weak interactions and the {Cabibbo} angle in chiral dynamics},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {324--334},
     year = {1978},
     volume = {36},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1978_36_3_a3/}
}
TY  - JOUR
AU  - A. A. Khelashvili
TI  - Invariant properties of weak interactions and the Cabibbo angle in chiral dynamics
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1978
SP  - 324
EP  - 334
VL  - 36
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1978_36_3_a3/
LA  - ru
ID  - TMF_1978_36_3_a3
ER  - 
%0 Journal Article
%A A. A. Khelashvili
%T Invariant properties of weak interactions and the Cabibbo angle in chiral dynamics
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1978
%P 324-334
%V 36
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1978_36_3_a3/
%G ru
%F TMF_1978_36_3_a3
A. A. Khelashvili. Invariant properties of weak interactions and the Cabibbo angle in chiral dynamics. Teoretičeskaâ i matematičeskaâ fizika, Tome 36 (1978) no. 3, pp. 324-334. http://geodesic.mathdoc.fr/item/TMF_1978_36_3_a3/

[1] R. Gatto, G. Sartori, M. Tonin, Phys. Lett., 28B (1968), 128 | DOI

[2] N. Cabibbo, L. Maiani, Phys. Rev., D1 (1970), 707 | MR

[3] N. Cabibbo, Phys. Rev. Lett., 10 (1963), 531 | DOI

[4] R. J. Oakes, Phys. Lett., 29B (1969), 683 | DOI

[5] S. Eliezer, Phys. Rev., D11 (1975), 189

[6] M. Gell-Mann, R. J. Oakes, B. Renner, Phys. Rev., 175 (1968), 2195 | DOI

[7] S. Okubo, V. Mathur, Phys. Rev., D1 (1970), 2046 | MR

[8] H. Pagels, Phys. Rev., D11 (1975), 1213

[9] J. Lánik, Trieste Preprint, IC/75/44, 1975

[10] J. Chkareuli, I. Pasiashvili, Phys. Lett., 47B (1973), 43 | DOI

[11] S. Glashow, J. Iliopoulos, L. Maiani, Phys. Rev., D2 (1970), 1285

[12] V. De Alfaro i dr., Toki v fizike adronov, «Mir», 1976

[13] G. Cicogna, F. Strocchi, R. Vergara Caffarelli, Phys. Rev. Lett., 29 (1972), 1702 | DOI

[14] W. Palmer, Phys. Rev., D6 (1972), 2897; D8 (1973), 1156

[15] R. Socolow, Phys. Rev., 137 (1965), B1221 | DOI | MR

[16] S. Coleman, J. Math. Phys., 7 (1966), 787 | DOI | MR