Complete nonstationary density matrix of electron-phonon system in the functional integration representation
Teoretičeskaâ i matematičeskaâ fizika, Tome 36 (1978) no. 2, pp. 252-263

Voir la notice de l'article provenant de la source Math-Net.Ru

In the functional integral representation of the complete wave function of an electronphonon system describing its evolution from an arbitrary initial state, all integrations with respect to the phonon coordinates are performed and the displacements of the centers of the oscillations of the phonon modes are found. A nonstationary density matrix which depends on the electron and phonon coordinates is found for any mixed ensemble of electron-phonon systems.
@article{TMF_1978_36_2_a8,
     author = {E. P. Pokatilov and V. M. Fomin},
     title = {Complete nonstationary density matrix of electron-phonon system in the functional integration representation},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {252--263},
     publisher = {mathdoc},
     volume = {36},
     number = {2},
     year = {1978},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1978_36_2_a8/}
}
TY  - JOUR
AU  - E. P. Pokatilov
AU  - V. M. Fomin
TI  - Complete nonstationary density matrix of electron-phonon system in the functional integration representation
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1978
SP  - 252
EP  - 263
VL  - 36
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1978_36_2_a8/
LA  - ru
ID  - TMF_1978_36_2_a8
ER  - 
%0 Journal Article
%A E. P. Pokatilov
%A V. M. Fomin
%T Complete nonstationary density matrix of electron-phonon system in the functional integration representation
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1978
%P 252-263
%V 36
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1978_36_2_a8/
%G ru
%F TMF_1978_36_2_a8
E. P. Pokatilov; V. M. Fomin. Complete nonstationary density matrix of electron-phonon system in the functional integration representation. Teoretičeskaâ i matematičeskaâ fizika, Tome 36 (1978) no. 2, pp. 252-263. http://geodesic.mathdoc.fr/item/TMF_1978_36_2_a8/