Singularities of Feynman diagrams in the coordinate space
Teoretičeskaâ i matematičeskaâ fizika, Tome 36 (1978) no. 2, pp. 183-192
Cet article a éte moissonné depuis la source Math-Net.Ru
The wave front $WF(G_k)$ of an arbitrary Feynman diagram with $k$ external vertices is described. It is shown that $G_2(x_1,x_2)$ can have singularities only for $(x_1-x_2)^2=0$, and $G_3(x_1,x_2,x_3)$ only when $(x_j-x_{j'})^2=0$ for certain $j\ne j'$. It is shown that in the case of four or more external vertices the simplest diagrams have singularities not only on the light cones with respect to $x_j-x_{j'}$.
@article{TMF_1978_36_2_a3,
author = {V. A. Smirnov},
title = {Singularities of {Feynman} diagrams in the coordinate space},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {183--192},
year = {1978},
volume = {36},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1978_36_2_a3/}
}
V. A. Smirnov. Singularities of Feynman diagrams in the coordinate space. Teoretičeskaâ i matematičeskaâ fizika, Tome 36 (1978) no. 2, pp. 183-192. http://geodesic.mathdoc.fr/item/TMF_1978_36_2_a3/
[1] L. Hörmander, Acta Math., 127 (1971), 79 | DOI | MR | Zbl
[2] M. Reed, B. Simon, Methods of Modern Mathematical Physics. II. Fourier Analysis, Self-adjointness, Acad. Press, N. Y.–London, 1976 | MR
[3] V. A. Smirnov, TMF, 29 (1976), 336 | MR | Zbl
[4] M. Sato, T. Kawai, M. Kashiwara, “Hyperfunctions and pseudodifferential equations”, Lect. Notes in Math., 287 (1973), 265 | DOI | MR
[5] W. Zimmermann, Ann. Phys., 77 (1973), 536 | DOI | MR
[6] S. A. Anikin, O. I. Zavyalov, TMF, 26 (1976), 162 ; 27 (1976), 425 ; S. A. Anikin, M. C. Polivanov, O. I. Zavialov, Fortschr. Phys., 25 (1977), 459 | MR | MR | DOI | MR