Algebras of observables of the free Dirac field
Teoretičeskaâ i matematičeskaâ fizika, Tome 36 (1978) no. 2, pp. 166-182 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A net of algebras of local observables of the free Dirac field satisfying the Haag–Araki axioms is constructed and investigated. It is shown that because of the $C$-number nature of the commutation relations the model also satisfies the axiom of weak additivity, in contrast to fermion systems of general form. A new representation for a spinor field is constructed that is unitarily equivalent to the usual one and taken as a basis for constructing a net of algebras of observables of threedimensional regions on the $t=0$ hyperplane of Minkowski space. It is shown that the algebra of observables of a three-dimensional region $B$ coincides with that of the four-dimensional double cone $C(B)$ with base $B$. This correspondence is used to prove structure theorems for the algebras of observables of the regions $C(B)$ and $C(B)'$. The methods of Tomita–Takesaki theory are used to show that these algebras are type III factors after restriction to coherent superselection sections and satisfy the duality condition.
@article{TMF_1978_36_2_a2,
     author = {K. Yu. Dadashyan and S. S. Horuzhy},
     title = {Algebras of observables of the free {Dirac} field},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {166--182},
     year = {1978},
     volume = {36},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1978_36_2_a2/}
}
TY  - JOUR
AU  - K. Yu. Dadashyan
AU  - S. S. Horuzhy
TI  - Algebras of observables of the free Dirac field
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1978
SP  - 166
EP  - 182
VL  - 36
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1978_36_2_a2/
LA  - ru
ID  - TMF_1978_36_2_a2
ER  - 
%0 Journal Article
%A K. Yu. Dadashyan
%A S. S. Horuzhy
%T Algebras of observables of the free Dirac field
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1978
%P 166-182
%V 36
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1978_36_2_a2/
%G ru
%F TMF_1978_36_2_a2
K. Yu. Dadashyan; S. S. Horuzhy. Algebras of observables of the free Dirac field. Teoretičeskaâ i matematičeskaâ fizika, Tome 36 (1978) no. 2, pp. 166-182. http://geodesic.mathdoc.fr/item/TMF_1978_36_2_a2/

[1] H. Araki, J. Math. Phys., 4 (1963), 1343 | DOI | MR | Zbl

[2] H. Araki, Progr. Theor. Phys., 32 (1964), 956 | DOI | MR | Zbl

[3] H. Araki, J. Math. Phys., 5 (1964), 1 | DOI | MR | Zbl

[4] G. Dell'Antonio, Commun. Math. Phys., 9 (1968), 81 | DOI | MR | Zbl

[5] V. N. Sushko, S. S. Khoruzhii, TMF, 13 (1972), 291

[6] N. N. Bogolyubov, A. A. Logunov, I. T. Todorov, Osnovy aksiomaticheskogo podkhoda v kvantovoi teorii polya, «Nauka», 1975 | MR

[7] V. N. Sushko, S. S. Khoruzhii, TMF, 4, 171 ; (1970), 341 | Zbl

[8] V. S. Vladimirov, Metody teorii funktsii mnogikh kompleksnykh peremennykh, «Nauka», 1964 | MR

[9] M. Takesaki, Tomita's theory of modular Hilbert algebras, Lecture Notes in Math., 128, Springer-Verlag, 1970 | DOI | MR | Zbl

[10] M. A. Rieffel, Commun. Math. Phys., 39 (1974), 153 | DOI | MR | Zbl

[11] S. Doplicher, R. Haag, J. E. Roberts, Commun. Math. Phys., 13 (1969), 1 | DOI | MR | Zbl

[12] S. S. Khoruzhii, TMF, 25 (1975), 291