Algebras of observables of the free Dirac field
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 36 (1978) no. 2, pp. 166-182
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			A net of algebras of local observables of the free Dirac field satisfying the 
Haag–Araki axioms is constructed and investigated. It is shown that because of the $C$-number nature of the commutation relations the model also satisfies the axiom of weak additivity, in contrast to fermion systems of general form. A new representation for a spinor field is constructed that is unitarily equivalent to the usual one and taken as a basis for constructing a net of algebras of observables of threedimensional regions on the $t=0$ hyperplane of Minkowski space. It is shown that the algebra of observables of a three-dimensional region $B$ coincides with that of the four-dimensional double cone $C(B)$ with base $B$. This correspondence is used to prove structure theorems for the algebras of observables of the regions $C(B)$ and $C(B)'$. The methods of Tomita–Takesaki theory are used to show that these algebras are type III factors after restriction to coherent superselection sections and satisfy the duality condition.
			
            
            
            
          
        
      @article{TMF_1978_36_2_a2,
     author = {K. Yu. Dadashyan and S. S. Horuzhy},
     title = {Algebras of observables of the free {Dirac} field},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {166--182},
     publisher = {mathdoc},
     volume = {36},
     number = {2},
     year = {1978},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1978_36_2_a2/}
}
                      
                      
                    K. Yu. Dadashyan; S. S. Horuzhy. Algebras of observables of the free Dirac field. Teoretičeskaâ i matematičeskaâ fizika, Tome 36 (1978) no. 2, pp. 166-182. http://geodesic.mathdoc.fr/item/TMF_1978_36_2_a2/
