Variable phase method for quasipotential equation in terms of rapidities
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 36 (1978) no. 1, pp. 42-52
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			In the relativistic configuration representation, variable phase equations are obtained
for the partial-wave and total scattering amplitudes of two particles. A quasipotential
equation in terms of rapidities is the point of departure.
			
            
            
            
          
        
      @article{TMF_1978_36_1_a3,
     author = {I. V. Amirkhanov and G. V. Grusha and R. M. Mir-Kassimov},
     title = {Variable phase method for quasipotential equation in terms of rapidities},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {42--52},
     publisher = {mathdoc},
     volume = {36},
     number = {1},
     year = {1978},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1978_36_1_a3/}
}
                      
                      
                    TY - JOUR AU - I. V. Amirkhanov AU - G. V. Grusha AU - R. M. Mir-Kassimov TI - Variable phase method for quasipotential equation in terms of rapidities JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1978 SP - 42 EP - 52 VL - 36 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1978_36_1_a3/ LA - ru ID - TMF_1978_36_1_a3 ER -
%0 Journal Article %A I. V. Amirkhanov %A G. V. Grusha %A R. M. Mir-Kassimov %T Variable phase method for quasipotential equation in terms of rapidities %J Teoretičeskaâ i matematičeskaâ fizika %D 1978 %P 42-52 %V 36 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/TMF_1978_36_1_a3/ %G ru %F TMF_1978_36_1_a3
I. V. Amirkhanov; G. V. Grusha; R. M. Mir-Kassimov. Variable phase method for quasipotential equation in terms of rapidities. Teoretičeskaâ i matematičeskaâ fizika, Tome 36 (1978) no. 1, pp. 42-52. http://geodesic.mathdoc.fr/item/TMF_1978_36_1_a3/
