Spinor equation admitting an infinite group
Teoretičeskaâ i matematičeskaâ fizika, Tome 36 (1978) no. 1, pp. 141-143
Cet article a éte moissonné depuis la source Math-Net.Ru
It is shown that the relativistically invariant equation $\psi^\alpha\sigma_{\dot{\alpha\beta}}^i \psi^{\dot\beta}\partial\psi^\mu/\partial x^i=0$ for the twocomponent spinor $\psi^\alpha$ admits the conformal group and infinite groups of gauge and supergauge transformations.
@article{TMF_1978_36_1_a12,
author = {V. D. Bondarev and S. A. Vladimirov},
title = {Spinor equation admitting an infinite group},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {141--143},
year = {1978},
volume = {36},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1978_36_1_a12/}
}
V. D. Bondarev; S. A. Vladimirov. Spinor equation admitting an infinite group. Teoretičeskaâ i matematičeskaâ fizika, Tome 36 (1978) no. 1, pp. 141-143. http://geodesic.mathdoc.fr/item/TMF_1978_36_1_a12/
[1] V. I. Ogievetskii, L. Mezinchesku, UFN, 117 (1975), 637 | DOI | MR
[2] M. D. Kruskal, N. J. Zabusky, J. Math. Phys., 7 (1966), 1256 | DOI | MR | Zbl
[3] I. A. Kunin, Teoriya uprugikh sred s mikrostrukturoi, «Nauka», 1975, s. 216 | MR
[4] N. Kh. Ibragimov, Gruppy Li v nekotorykh voprosakh matematicheskoi fiziki, NGU, Novosibirsk, 1972, s. 144 | MR
[5] D. I. Blokhintsev, TMF, 21 (1974), 155
[6] L. V. Ovsyannikov, Gruppovye svoistva differentsialnykh uravnenii, izd. SO AN SSSR, Novosibirsk, 1972 | MR
[7] S. A. Vladimirov, DAN USSR, ser. A, 1975, no. 5, 394
[8] F. A. Berezin, G. I. Kats, Matem. sb., 82 (1970), 343 | MR | Zbl
[9] D. V. Volkov, V. P. Akulov, Pisma v ZhETF, 16 (1972), 621