Spinor equation admitting an infinite group
Teoretičeskaâ i matematičeskaâ fizika, Tome 36 (1978) no. 1, pp. 141-143 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is shown that the relativistically invariant equation $\psi^\alpha\sigma_{\dot{\alpha\beta}}^i \psi^{\dot\beta}\partial\psi^\mu/\partial x^i=0$ for the twocomponent spinor $\psi^\alpha$ admits the conformal group and infinite groups of gauge and supergauge transformations.
@article{TMF_1978_36_1_a12,
     author = {V. D. Bondarev and S. A. Vladimirov},
     title = {Spinor equation admitting an infinite group},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {141--143},
     year = {1978},
     volume = {36},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1978_36_1_a12/}
}
TY  - JOUR
AU  - V. D. Bondarev
AU  - S. A. Vladimirov
TI  - Spinor equation admitting an infinite group
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1978
SP  - 141
EP  - 143
VL  - 36
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1978_36_1_a12/
LA  - ru
ID  - TMF_1978_36_1_a12
ER  - 
%0 Journal Article
%A V. D. Bondarev
%A S. A. Vladimirov
%T Spinor equation admitting an infinite group
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1978
%P 141-143
%V 36
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1978_36_1_a12/
%G ru
%F TMF_1978_36_1_a12
V. D. Bondarev; S. A. Vladimirov. Spinor equation admitting an infinite group. Teoretičeskaâ i matematičeskaâ fizika, Tome 36 (1978) no. 1, pp. 141-143. http://geodesic.mathdoc.fr/item/TMF_1978_36_1_a12/

[1] V. I. Ogievetskii, L. Mezinchesku, UFN, 117 (1975), 637 | DOI | MR

[2] M. D. Kruskal, N. J. Zabusky, J. Math. Phys., 7 (1966), 1256 | DOI | MR | Zbl

[3] I. A. Kunin, Teoriya uprugikh sred s mikrostrukturoi, «Nauka», 1975, s. 216 | MR

[4] N. Kh. Ibragimov, Gruppy Li v nekotorykh voprosakh matematicheskoi fiziki, NGU, Novosibirsk, 1972, s. 144 | MR

[5] D. I. Blokhintsev, TMF, 21 (1974), 155

[6] L. V. Ovsyannikov, Gruppovye svoistva differentsialnykh uravnenii, izd. SO AN SSSR, Novosibirsk, 1972 | MR

[7] S. A. Vladimirov, DAN USSR, ser. A, 1975, no. 5, 394

[8] F. A. Berezin, G. I. Kats, Matem. sb., 82 (1970), 343 | MR | Zbl

[9] D. V. Volkov, V. P. Akulov, Pisma v ZhETF, 16 (1972), 621