Self-avoiding walks on a triangular lattice
Teoretičeskaâ i matematičeskaâ fizika, Tome 35 (1978) no. 3, pp. 332-338
Cet article a éte moissonné depuis la source Math-Net.Ru
An analytic method is proposed for calculating the partition function for self-avoiding walks on a triangular lattice. It is shown that the specific heat of the system has a logarithmic singularity at the critical point. The critical temperature is calculated and found to agree with the results of high-temperature expansions (a difference of order $1\%$).
@article{TMF_1978_35_3_a4,
author = {N. D. Gagunashvili and V. B. Priezzhev},
title = {Self-avoiding walks on a~triangular lattice},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {332--338},
year = {1978},
volume = {35},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1978_35_3_a4/}
}
N. D. Gagunashvili; V. B. Priezzhev. Self-avoiding walks on a triangular lattice. Teoretičeskaâ i matematičeskaâ fizika, Tome 35 (1978) no. 3, pp. 332-338. http://geodesic.mathdoc.fr/item/TMF_1978_35_3_a4/
[1] H. N. Temperley, Phys. Rev., 103 (1956), 1 | DOI | MR | Zbl
[2] M. E. Fisher, M. F. Sykes, Phys. Rev., 114 (1959), 45 | DOI | MR
[3] F. T. Wall, J. J. Erpenbeck, J. Chem. Phys., 30 (1959), 634 | DOI
[4] M. F. Sykes, A. J. Guttman, M. G. Watts, P. D. Roberts, J. Phys., A5 (1972), 653
[5] B. J. Hilley, M. F. Sykes, J. Chem. Phys., 34 (1961), 1531 | DOI | MR
[6] V. B. Priezzhev, Preprint OIYaI R17-9633, Dubna, 1976
[7] E. V. Montroll, Prikladnaya kombinatornaya matematika, Sb., «Mir», 1968
[8] E. V. Montroll, Ustoichivost i fazovye perekhody, Sb., «Mir», 1973 | MR