Distribution functions of a degenerate Fermi gas with allowance for pairing correlations
Teoretičeskaâ i matematičeskaâ fizika, Tome 35 (1978) no. 3, pp. 406-418 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

With the aim of generalizing the Thomas–Fermi statistical method to systems with pairing correlations of superconducting type in the framework of Hartree–Fock–Bogolyubov theory, the quasiclassical method to terms of order $\hbar^3$ inclusively is used to calculate the single-particle distribution function and the distribution function of the pairing correlations of a degenerate Fermi gas. In connection with the solution of this problem, a method of obtaining quasiclassical estimates of operator functions is developed; it is of independent interest and more general than the method of Kirzhnits.
@article{TMF_1978_35_3_a14,
     author = {A. S. Tyapin},
     title = {Distribution functions of a~degenerate {Fermi} gas with allowance for pairing correlations},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {406--418},
     year = {1978},
     volume = {35},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1978_35_3_a14/}
}
TY  - JOUR
AU  - A. S. Tyapin
TI  - Distribution functions of a degenerate Fermi gas with allowance for pairing correlations
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1978
SP  - 406
EP  - 418
VL  - 35
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1978_35_3_a14/
LA  - ru
ID  - TMF_1978_35_3_a14
ER  - 
%0 Journal Article
%A A. S. Tyapin
%T Distribution functions of a degenerate Fermi gas with allowance for pairing correlations
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1978
%P 406-418
%V 35
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1978_35_3_a14/
%G ru
%F TMF_1978_35_3_a14
A. S. Tyapin. Distribution functions of a degenerate Fermi gas with allowance for pairing correlations. Teoretičeskaâ i matematičeskaâ fizika, Tome 35 (1978) no. 3, pp. 406-418. http://geodesic.mathdoc.fr/item/TMF_1978_35_3_a14/

[1] A. S. Kompaneets, E. S. Pavlovskii, ZhETF, 31 (1956), 427

[2] D. A. Kirzhnits, Polevye metody teorii mnogikh chastits, Atomizdat, 1963

[3] N. N. Bogolyubov, UFN, 67 (1959), 549 | DOI | MR